Search results

1 – 10 of 29
Article
Publication date: 21 April 2023

Amina Zahafi, Mohamed Hadid and Raouf Bencharif

A newly developed frequency-independent lumped parameter model (LPM) is the purpose of the present paper. This new model’s direct outcome ensures high efficiency and a…

Abstract

Purpose

A newly developed frequency-independent lumped parameter model (LPM) is the purpose of the present paper. This new model’s direct outcome ensures high efficiency and a straightforward calculation of foundations’ vertical vibrations. A rigid circular foundation shape resting on a nonhomogeneous half-space subjected to a vertical time-harmonic excitation is considered.

Design/methodology/approach

A simple model representing the soil–foundation system consists of a single degree of freedom (SDOF) system incorporating a lumped mass linked to a frequency-independent spring and dashpot. Besides that, an additional fictitious mass is incorporated into the SDOF system. Several numerical methods and mathematical techniques are used to identify each SDOF’s parameter: (1) the vertical component of the static and dynamic foundation impedance function is calculated. This dynamic interaction problem is solved by using a formulation combining the boundary element method and the thin layer method, which allows the simulation of any complex nonhomogeneous half-space configuration. After, one determines the static stiffness’s expression of the circular foundation resting on a nonhomogeneous half-space. (2) The system’s parameters (dashpot coefficient and fictitious mass) are calculated at the resonance frequency; and (3) using a curve fitting technique, the general formulas of the frequency-independent dashpot coefficients and additional fictitious mass are established.

Findings

Comparisons with other results from a rigorous formulation were made to verify the developed model’s accuracy; these are exceptional cases of the more general problems that can be addressed (problems like shallow or embedded foundations of arbitrary shape, other vibration modes, etc.).

Originality/value

In this new LPM, the impedance functions will no longer be needed. The engineer only needs a limited number of input parameters (geometrical and mechanical characteristics of the foundation and the soil). Moreover, a simple calculator is required (i.e. we do not need any sophisticated software).

Details

World Journal of Engineering, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 1708-5284

Keywords

Article
Publication date: 9 December 2020

Rajesh Kumar, Seema Thakran, Ankush Gunghas and Kapil Kumar Kalkal

The purpose of this study is to analyze the two-dimensional disturbances in a nonlocal, functionally graded, isotropic thermoelastic medium under the purview of the Green–Lindsay…

Abstract

Purpose

The purpose of this study is to analyze the two-dimensional disturbances in a nonlocal, functionally graded, isotropic thermoelastic medium under the purview of the Green–Lindsay model of generalized thermoelasticity. The formulation is subjected to a mechanical load. All the thermomechanical properties of the solid are assumed to vary exponentially with the position.

Design/methodology/approach

Normal mode technique is proposed to obtain the exact expressions for the displacement components, stresses and temperature field.

Findings

Numerical computations have been carried out with the help of MATLAB software and the results are illustrated graphically. These are also calculated numerically for a magnesium crystal-like material and illustrated through graphs. Theoretical and numerical results demonstrate that the nonlocality and nonhomogeneity parameters have significant effects on the considered physical fields.

Originality/value

Influences of nonlocality and nonhomogeneity on the physical quantities are carefully analyzed for isothermal and insulated boundaries. The present work is useful and valuable for analysis of problems involving mechanical shock, nonlocal parameter, functionally graded materials and elastic deformation.

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. 31 no. 7
Type: Research Article
ISSN: 0961-5539

Keywords

Article
Publication date: 12 October 2015

Rajneesh Kakar

– The purpose of this paper is to investigate the existence of SH-waves in fiber-reinforced layer placed over a heterogeneous elastic half-space.

Abstract

Purpose

The purpose of this paper is to investigate the existence of SH-waves in fiber-reinforced layer placed over a heterogeneous elastic half-space.

Design/methodology/approach

The heterogeneity of the elastic half-space is caused by the exponential variations of density and rigidity. As a special case when both the layers are homogeneous, the derived equation is in agreement with the general equation of Love wave.

Findings

Numerically, it is observed that the velocity of SH-waves decreases with the increase of heterogeneity and reinforced parameters. The dimensionless phase velocity of SH-waves increases with the decreases of dimensionless wave number and shown through figures.

Originality/value

In this work, SH-wave in a fiber-reinforced anisotropic medium overlying a heterogeneous gravitational half-space has been investigated analytically and numerically. The dispersion equation for the propagation of SH-waves has been observed in terms of Whittaker function and its derivative of second degree order. It has been observed that on the removal of heterogeneity of half-space, and reinforced parameters of the layer, the derived dispersion equation reduces to Love wave dispersion equation thereby validates the solution of the problem. The equation of propagation of Love wave in fiber-reinforced medium over a heterogeneous half-space given by relevant authors is also reduced from the obtained dispersion relation under the considered geometry.

Details

Multidiscipline Modeling in Materials and Structures, vol. 11 no. 3
Type: Research Article
ISSN: 1573-6105

Keywords

Article
Publication date: 12 October 2015

Rajneesh Kakar

The purpose of this paper is to deal with the propagation of Love waves in inhomogeneous viscoelastic layer overlying a gravitational half-space. It has been observed velocity of…

Abstract

Purpose

The purpose of this paper is to deal with the propagation of Love waves in inhomogeneous viscoelastic layer overlying a gravitational half-space. It has been observed velocity of Love waves depends on viscosity, gravity, inhomogeneity and initial stress of the layer.

Design/methodology/approach

The dispersion relation for the Love wave in closed form is obtained with Whitaker’s function.

Findings

The effect of various non-dimensional inhomogeneity factors, gravity factor and internal friction on the non-dimensional Love wave velocity has been shown graphically. The authors observed that the dispersion curve of Love wave increases as the inhomogeneity factor increases. It is seen that increment in gravity, inhomogeneity and internal friction decreases the damping phase velocity of Love waves but it is more prominent in case of internal friction.

Originality/value

Surface plot of Love wave reveals that the velocity ratio increases with the increase of non-dimensional phase velocity and non-dimensional wave number. The above results may attract seismologists and geologists.

Details

Multidiscipline Modeling in Materials and Structures, vol. 11 no. 3
Type: Research Article
ISSN: 1573-6105

Keywords

Article
Publication date: 15 July 2021

Anand Mandi, Santimoy Kundu and Prakash Chandra Pal

The present discussed problem deals with the torsional surface wave scattering in an initially stressed inhomogeneous medium. The assumed model consists of tri-mediums resting…

Abstract

Design/methodology/approach

The present discussed problem deals with the torsional surface wave scattering in an initially stressed inhomogeneous medium. The assumed model consists of tri-mediums resting over a viscoelastic semi-infinite medium and the considered tri-mediums are transversely isotropic, porous, and heterogeneous respectively under the impression of initial stress.

Design/methodology/approach

Heterogeneities are associated with density and rigidity in the intermediate layer and considered heterogeneities are of the trigonometric form. Displacement components are derived for mediums by applying separable variables.

Findings

Frequency equation is deduced by using suitable boundary conditions, defined at the free surface of the uppermost medium, and on the interfaces between mediums. The derived equation is of the complex form, real and imaginary parts direct the phase/damped velocities respectively. Additional results are considered in particular cases. Numerical examples are adopted for computing frequency equation and drawn consequences are demonstrated graphically to analyze the significant impact of various parameters on the phase velocity as well as on damped velocity of the surface wave sketched against the wavenumber.

Originality/Value

This presented research work provides a different view over the analysis of torsional surface waves than the earlier investigations. Previously studied problems on the wave generation were conducted in different models under the various affecting parameters. Study on torsional wave generation in the present model is not carried out till now. This study may find its virtue in the theoretical aspect as well as in the possible practical implications. The outcomes are relevant to geology and allied areas; moreover, the concern applications may be implicated in geological exploration, civil engineering, and prediction of Earthquake etc.

Details

Engineering Computations, vol. 38 no. 8
Type: Research Article
ISSN: 0264-4401

Keywords

Article
Publication date: 6 September 2021

Sunil Kumar, Aarti Kadian and Kapil Kumar Kalkal

The purpose of this study is to analyze the disturbances in a two-dimensional nonlocal, micropolar elastic medium under the dual-phase-lag model of thermoelasticity whose surface…

Abstract

Purpose

The purpose of this study is to analyze the disturbances in a two-dimensional nonlocal, micropolar elastic medium under the dual-phase-lag model of thermoelasticity whose surface is subjected to an inclined mechanical load. The present study is carried out under the influence of gravity.

Design/methodology/approach

The normal mode technique is used to obtain the exact expressions of the physical fields.

Findings

For inclined mechanical load, the impact of micropolarity, nonlocal parameter, gravity and inclination angle have been highlighted on the considered physical fields.

Originality/value

The numerical results are computed for various physical quantities such as displacement, stresses and temperature for a magnesium crystal-like material and are illustrated graphically. The study is valuable for the analysis of thermoelastic problems involving gravitational field, nonlocal parameter, micropolarity and elastic deformations.

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. 32 no. 6
Type: Research Article
ISSN: 0961-5539

Keywords

Article
Publication date: 6 April 2020

Sunita Deswal, Devender Sheoran and Kapil Kumar Kalkal

The purpose of this paper is to establish a model of two-dimensional half-space problem of linear, isotropic, homogeneous, initially stressed, rotating thermoelastic medium with…

Abstract

Purpose

The purpose of this paper is to establish a model of two-dimensional half-space problem of linear, isotropic, homogeneous, initially stressed, rotating thermoelastic medium with microtemperatures. The expressions for different physical variables such as displacement distribution, stress distribution, temperature field and microtemperatures are obtained in the physical domain.

Design/methodology/approach

Normal mode analysis technique is adopted to procure the exact solution of the problem.

Findings

Numerical computations have been carried out with the help of MATLAB programming, and the results are illustrated graphically. Comparisons are made to show the effects of rotation, time and microtemperatures on the resulting quantities. The graphical results indicate that the effects of rotation, microtemperatures and time are very pronounced on the field variables.

Originality/value

In the present work, we have investigated the effects of rotation, time and microtemperature in an initially stressed thermoelastic medium. Although various investigations do exist to observe the disturbances in a thermoelastic medium under the effects of different parameters, the work in its present form, i.e. the disturbances in a thermoelastic medium in the presence of angular velocity, initial stress and microtemperature have not been studied till now. The present work is useful and valuable for analysis of problems involving coupled thermal shock, rotation parameter, microtemperatures and elastic deformation.

Details

Multidiscipline Modeling in Materials and Structures, vol. 16 no. 6
Type: Research Article
ISSN: 1573-6105

Keywords

Article
Publication date: 2 September 2019

Arash Tavakoli, M. Pourseifi and Sara Rezaei

The purpose of this paper is to provide a theoretical analysis of the fracture behavior of multiple axisymmetric interface cracks between a homogeneous isotropic layer and its…

Abstract

Purpose

The purpose of this paper is to provide a theoretical analysis of the fracture behavior of multiple axisymmetric interface cracks between a homogeneous isotropic layer and its functionally graded material (FGM) coating under torsional loading.

Design/methodology/approach

In this paper, the authors employ the distributed dislocation technique to the stress analysis, an FGM coating-substrate system under torsional loading with multiple axisymmetric cracks consist of annular and penny-shaped cracks. First, with the aid of the Hankel transform, the stress fields in the homogeneous layer and its FGM coating are obtained. The problem is then reduced to a set of singular integral equations with a Cauchy-type singularity. Unknown dislocation density is achieved by numerical solution of these integral equations which are employed to calculate the SIFs.

Findings

From the numerical results, the following key points were observed: first, for two types of the axisymmetric interface cracks, the SIFs decrease with growing in the values of the non-homogeneity. Second, the SIFs increase with increases in interface crack length. Third, the magnitude of the SIFs decreases with increases in the FGM coating thickness. Fourth, the interaction between cracks is an important factor affecting the SIFs of crack tips.

Originality/value

New analytical dislocation solution in an FGM coating-substrate system is developed.

Details

Multidiscipline Modeling in Materials and Structures, vol. 15 no. 6
Type: Research Article
ISSN: 1573-6105

Keywords

Article
Publication date: 27 July 2018

V.R. Manthena, G.D. Kedar and K.C. Deshmukh

The purpose of this paper is to determine the temperature distribution of a thin rectangular plate made of thermosensitive functionally graded (FG) material. By finding out…

Abstract

Purpose

The purpose of this paper is to determine the temperature distribution of a thin rectangular plate made of thermosensitive functionally graded (FG) material. By finding out thermal deflection and stress resultants, the thermal stresses have been obtained and analyzed.

Design/methodology/approach

Initially, the rectangular plate is kept at the surrounding temperature. The upper, lower and two parallel sides (y=0, b and z=0, c) are thermally insulated, while other parallel sides (x=0, a) are given convective-type heating, that is, the rate of change of the temperature of the rectangular plate is proportional to the difference between its own temperature and the surrounding temperature. The non-linear heat conduction equation has been converted to linear form by introducing Kirchhoff’s variable transformation and the resultant heat conduction equation is solved by integral transform technique with hyperbolic varying point heat source.

Findings

A mathematical model is prepared for FG ceramic–metal-based material, in which alumina is selected as the ceramic and nickel as the metal. The thermal deflection and thermal stresses have been obtained for the homogeneous and nonhomogeneous materials. The results are illustrated numerically and depicted graphically for comparison. During this study, one observed that variations are seen in the stresses, due to the variation in the inhomogeneity parameters.

Research limitations/implications

The paper is constructed purely on theoretical mathematical modeling by considering various parameters and functions.

Practical implications

This type of theoretical analysis may be useful in high-temperature environments like nuclear components, spacecraft structural members, thermal barrier coatings, etc., as the effect of temperature and evaluation of temperature-dependent and nonhomogeneous material properties plays a vital role for accurate and reliable structural analysis.

Originality/value

In this paper, the authors have used thermal deflection and resultant stresses to determine the thermal stresses of a thin rectangular plate with temperature- and spatial variable-dependent material properties which is a new and novel contribution to the field.

Details

Multidiscipline Modeling in Materials and Structures, vol. 14 no. 5
Type: Research Article
ISSN: 1573-6105

Keywords

Article
Publication date: 14 August 2023

Sohit Jatain, Sunita Deswal and Kapil Kumar Kalkal

The purpose of this paper is to establish a two-dimensional model of Green–Lindsay theory for micropolar magneto-thermoelastic medium to study the photothermal effect. The model…

Abstract

Purpose

The purpose of this paper is to establish a two-dimensional model of Green–Lindsay theory for micropolar magneto-thermoelastic medium to study the photothermal effect. The model is used to study the coupling between elastic waves and plasma waves generated due to thermal changes in a micropolar elastic medium.

Design/methodology/approach

Normal mode analysis is used to obtain the analytical solutions of the governing equations.

Findings

Effects of magnetic field, micropolarity, photothermal and time are highlighted on various physical fields such as stresses, temperature, displacement and carrier density. The above physical fields also conform to the boundary conditions. It is further observed that all the physical quantities become zero outside some bounded region of space, thus confirming the notion of generalized theory of thermoelasticity.

Originality/value

The values of physical fields are computed numerically using MATLAB software considering material constants for silicon. Furthermore, the effects are depicted graphically and analyzed accordingly. The study is valuable for the analysis of thermoelastic problems involving magnetic field, micropolarity and elastic deformations.

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. 33 no. 11
Type: Research Article
ISSN: 0961-5539

Keywords

1 – 10 of 29