Search results

1 – 10 of 15
Article
Publication date: 4 March 2024

Hemanth Kumar N. and S.P. Sreenivas Padala

The construction industry is tasked with creating sustainable, efficient and cost-effective buildings. This study aims to develop a building information modeling (BIM)-based…

Abstract

Purpose

The construction industry is tasked with creating sustainable, efficient and cost-effective buildings. This study aims to develop a building information modeling (BIM)-based multiobjective optimization (MOO) model integrating the nondominated sorting genetic algorithm III (NSGA-III) to enhance sustainability. The goal is to reduce embodied energy and cost in the design process.

Design/methodology/approach

Through a case study research method, this study uses BIM, NSGA-III and real-world data in five phases: literature review, identification of factors, BIM model development, MOO model creation and validation in the architecture, engineering and construction sectors.

Findings

The innovative BIM-based MOO model optimizes embodied energy and cost to achieve sustainable construction. A commercial building case study validation showed a reduction of 30% in embodied energy and 21% in cost. This study validates the model’s effectiveness in integrating sustainability goals, enhancing decision-making, collaboration, efficiency and providing superior assessment.

Practical implications

This model delivers a unified approach to sustainable design, cutting carbon footprint and strengthening the industry’s ability to attain sustainable solutions. It holds potential for broader application and future integration of social and economic factors.

Originality/value

The research presents a novel BIM-based MOO model, uniquely focusing on sustainable construction with embodied energy and cost considerations. This holistic and innovative framework extends existing methodologies applicable to various buildings and paves the way for additional research in this area.

Article
Publication date: 17 July 2019

Yong-Hua Li, Ziqiang Sheng, Pengpeng Zhi and Dongming Li

How to get a lighter and stronger anti-rolling torsion bar has become a barrier for the development of high-speed railway vehicles. The purpose of this paper is to realize the…

Abstract

Purpose

How to get a lighter and stronger anti-rolling torsion bar has become a barrier for the development of high-speed railway vehicles. The purpose of this paper is to realize the multi-objective optimization of an anti-rolling torsion bar with a Modified Non-dominated Sorting Genetic Algorithm III (MNSGA-III), which aims to obtain a better design scheme of an anti-rolling torsion bar device.

Design/methodology/approach

First, the Non-dominated Sorting Genetic Algorithm III (NSGA-III) uses a simulated binary crossover (SBX) operator and a polynomial mutation operator, while the MNSGA-III algorithm proposed in this paper introduces an arithmetic crossover and an adaptive mutation operator to change the crossover and mutate operator in NSGA-III. Second, two algorithms are tested by ZDT3, ZDT4 functions. Both algorithms set the same population size and evolutionary generation, and then compare the results of NSGA-III and MNSGA-III. Finally, MNSGA-III is applied to the multi-objective model of an anti-rolling torsion bar which is established by taking the mass and stiffness of the torsion bar as the optimization object. After that, it obtains the Pareto solution set by solving the multi-objective model with MNSGA-III. The only optimal solution selected from the Pareto solution set is compared with the traditional design scheme of an anti-rolling torsion bar.

Findings

The MNSGA-III converges faster than NSGA-III. Besides, MNSGA-III has better diversity of Pareto solutions than NSGA-III and is closer to the ideal Pareto frontier. Comparing with the results before the optimization, it shows that the volume of the anti-rolling torsion bar reduces by 1.6 percent and the stiffness increases by 3.3 percent. The optimized data verifies the effectiveness of this method proposed in this paper.

Originality/value

The simulated binary crossover operator and polynomial mutation operator of NSGA-III are changed into an arithmetic crossover operator and an adaptive mutation operator, respectively, which improves the optimization performance of the algorithm.

Details

International Journal of Structural Integrity, vol. 12 no. 1
Type: Research Article
ISSN: 1757-9864

Keywords

Article
Publication date: 18 February 2022

Carla Martins Floriano, Valdecy Pereira and Brunno e Souza Rodrigues

Although the multi-criteria technique analytic hierarchy process (AHP) has successfully been applied in many areas, either selecting or ranking alternatives or to derive priority…

Abstract

Purpose

Although the multi-criteria technique analytic hierarchy process (AHP) has successfully been applied in many areas, either selecting or ranking alternatives or to derive priority vector (weights) for a set of criteria, there is a significant drawback in using this technique if the pairwise comparison matrix (PCM) has inconsistent comparisons, in other words, a consistency ratio (CR) above the value of 0.1, the final solution cannot be validated. Many studies have been developed to treat the inconsistency problem, but few of them tried to satisfy different quality measures, which are minimum inconsistency (fMI), the total number of adjusted pairwise comparisons (fNC), original rank preservation (fKT), minimum average weights adjustment (fWA) and finally, minimum L1 matrix norm between the original PCM and the adjusted PCM (fLM).

Design/methodology/approach

The approach is defined in four steps: first, the decision-maker should choose which quality measures she/he wishes to use, ranging from one to all quality measures. In the second step, the authors encode the PCM to be used in a many-objective optimization algorithm (MOOA), and each pairwise comparison can be adjusted individually. The authors generate consistent solutions from the obtained Pareto optimal front that carry the desired quality measures in the third step. Lastly, the decision-maker selects the most suitable solution for her/his problem. Remarkably, as the decision-maker can choose one (mono-objective), two (multi-objective), three or more (many-objectives) quality measures, not all MOOAs can handle or perform well in mono- or multi-objective problems. The unified non-sorting algorithm III (U-NSGA III) is the most appropriate MOOA for this type of scenario because it was specially designed to handle mono-, multi- and many-objective problems.

Findings

The use of two quality measures should not guarantee that the adjusted PCM is similar to the original PCM; hence, the decision-maker should consider using more quality measures if the objective is to preserve the original PCM characteristics.

Originality/value

For the first time, a many-objective approach reduces the CR to consistent levels with the ability to consider one or more quality measures and allows the decision-maker to adjust each pairwise comparison individually.

Details

Data Technologies and Applications, vol. 56 no. 5
Type: Research Article
ISSN: 2514-9288

Keywords

Article
Publication date: 3 June 2024

Jianhua Sun, Suihuai Yu, Jianjie Chu, Wenzhe Cun, Hanyu Wang, Chen Chen, Feilong Li and Yuexin Huang

In situations where the crew is reduced, the optimization of crew task allocation and sequencing (CTAS) can significantly enhance the operational efficiency of the man-machine…

10

Abstract

Purpose

In situations where the crew is reduced, the optimization of crew task allocation and sequencing (CTAS) can significantly enhance the operational efficiency of the man-machine system by rationally distributing workload and minimizing task completion time. Existing related studies exhibit a limited consideration of workload distribution and involve the violation of precedence constraints in the solution process. This study proposes a CTAS method to address these issues.

Design/methodology/approach

The method defines visual, auditory, cognitive and psychomotor (VACP) load balancing objectives and integrates them with workload balancing and minimum task completion time to ensure equitable workload distribution and task execution efficiency, and then a multi-objective optimization model for CTAS is constructed. Subsequently, it designs a population initialization strategy and a repair mechanism to maintain sequence feasibility, and utilizes them to improve the non-dominated sorting genetic algorithm III (NSGA-III) for solving the CTAS model.

Findings

The CTAS method is validated through a numerical example involving a mission with a specific type of armored vehicle. The results demonstrate that the method achieves equitable workload distribution by integrating VACP load balancing and workload balancing. Moreover, the improved NSGA-III maintains sequence feasibility and thus reduces computation time.

Originality/value

The study can achieve equitable workload distribution and enhance the search efficiency of the optimal CTAS scheme. It provides a novel perspective for task planners in objective determination and solution methodologies for CTAS.

Details

Kybernetes, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 0368-492X

Keywords

Article
Publication date: 15 March 2024

Lin Sun, Chunxia Yu, Jing Li, Qi Yuan and Shaoqiong Zhao

The paper aims to propose an innovative two-stage decision model to address the sustainable-resilient supplier selection and order allocation (SSOA) problem in the single-valued…

Abstract

Purpose

The paper aims to propose an innovative two-stage decision model to address the sustainable-resilient supplier selection and order allocation (SSOA) problem in the single-valued neutrosophic (SVN) environment.

Design/methodology/approach

First, the sustainable and resilient performances of suppliers are evaluated by the proposed integrated SVN-base-criterion method (BCM)-an acronym in Portuguese of interactive and multi-criteria decision-making (TODIM) method, with consideration of the uncertainty in the decision-making process. Then, a novel multi-objective optimization model is formulated, and the best sustainable-resilient order allocation solution is found using the U-NSGA-III algorithm and TOPSIS method. Finally, based on a real-life case in the automotive manufacturing industry, experiments are conducted to demonstrate the application of the proposed two-stage decision model.

Findings

The paper provides an effective decision tool for the SSOA process in an uncertain environment. The proposed SVN-BCM-TODIM approach can effectively handle the uncertainties from the decision-maker’s confidence degree and incomplete decision information and evaluate suppliers’ performance in different dimensions while avoiding the compensatory effect between criteria. Moreover, the proposed order allocation model proposes an original way to improve sustainable-resilient procurement values.

Originality/value

The paper provides a supplier selection process that can effectively integrate sustainability and resilience evaluation in an uncertain environment and develops a sustainable-resilient procurement optimization model.

Details

Kybernetes, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 0368-492X

Keywords

Article
Publication date: 7 June 2019

Felix T.S. Chan, Zhengxu Wang, Yashveer Singh, X.P. Wang, J.H. Ruan and M.K. Tiwari

The purpose of this paper is to develop a model which schedules activities and allocates resources in a resource constrained project management problem. This paper also considers…

482

Abstract

Purpose

The purpose of this paper is to develop a model which schedules activities and allocates resources in a resource constrained project management problem. This paper also considers learning rate and uncertainties in the activity durations.

Design/methodology/approach

An activity schedule with requirements of different resource units is used to calculate the objectives: makespan and resource efficiency. A comparisons between non-dominated sorting genetic algorithm – II (NSGA-II) and non-dominated sorting genetic algorithmIII (NSGA-III) is done to calculate near optimal solutions. Buffers are introduced in the activity schedule to take uncertainty into account and learning rate is used to incorporate the learning effect.

Findings

The results show that NSGA-III gives better near optimal solutions than NSGA-II for multi-objective problem with different complexities of activity schedule.

Research limitations/implications

The paper does not considers activity sequencing with multiple activity relations (for instance partial overlapping among different activities) and dynamic events occurring in between or during activities.

Practical implications

The paper helps project managers in manufacturing industry to schedule the activities and allocate resources for a near-real world environment.

Originality/value

This paper takes into account both the learning rate and the uncertainties in the activity duration for a resource constrained project management problem. The uncertainty in both the individual durations of activities and the whole project duration time is taken into consideration. Genetic algorithms were used to solve the problem at hand.

Details

Industrial Management & Data Systems, vol. 119 no. 6
Type: Research Article
ISSN: 0263-5577

Keywords

Open Access
Article
Publication date: 20 December 2021

Manuele Bertoluzzo, Paolo Di Barba, Michele Forzan, Maria Evelina Mognaschi and Elisabetta Sieni

The purpose of this paper is to show how the EStra-Many method works on optimization problems characterized by high-dimensionality of the objective space. Moreover, a comparison…

Abstract

Purpose

The purpose of this paper is to show how the EStra-Many method works on optimization problems characterized by high-dimensionality of the objective space. Moreover, a comparison with a more classical approach (a constrained bi-objective problem solved by means of NSGA-II) is done.

Design/methodology/approach

The six reactances of a compensation network (CN) for a wireless power transfer system (WPTS) are synthesized by means of an automated optimal design. In particular, an evolutionary algorithm EStra-Many coupled with a sorting strategy has been applied to an optimization problem with four objective functions (OFs). To assess the obtained results, a classical genetic algorithm NSGA-II has been run on a bi-objective problem, constrained by two functions, and the solutions have been analyzed and compared with the ones obtained by EStra-Many.

Findings

The proposed EStra-Many method identified a solution (CN synthesis) that enhances the WPTS, considering all the four OFs. In particular, to assess the synthesized CN, the Bode diagram of the frequency response and a circuital simulation were evaluated a posteriori; they showed good performance of the CN, with smooth response and without unwanted oscillations when fed by a square wave signal with offset. The EStra-Many method has been able to find a good solution among all the feasible solutions, showing potentiality also for other fields of research, in fact, a solution nondominated with respect to the starting point has been identified. From the methodological viewpoint, the main finding is a new formulation of the many-objective optimization problem based on the concept of degree of conflict, which gives rise to an implementation free from hierarchical weights.

Originality/value

The new approach EStra-Many used in this paper showed to properly find an optimal solution, trading-off multiple objectives. The compensation network so synthesized by the proposed method showed good properties in terms of frequency response and robustness. The proposed method, able to deal effectively with four OFs, could be applied to solve problems with a higher number of OFs in a variety of applications because of its generality.

Details

COMPEL - The international journal for computation and mathematics in electrical and electronic engineering , vol. 41 no. 2
Type: Research Article
ISSN: 0332-1649

Keywords

Article
Publication date: 23 August 2018

Luis Martí, Eduardo Segredo, Nayat Sánchez-Pi and Emma Hart

One of the main components of multi-objective, and therefore, many-objective evolutionary algorithms, is the selection mechanism. It is responsible for performing two main tasks…

Abstract

Purpose

One of the main components of multi-objective, and therefore, many-objective evolutionary algorithms, is the selection mechanism. It is responsible for performing two main tasks simultaneously. First, it has to promote convergence by selecting solutions which are as close as possible to the Pareto optimal set. And second, it has to promote diversity in the solution set provided. In the current work, an exhaustive study that involves the comparison of several selection mechanisms with different features is performed. Particularly, Pareto-based and indicator-based selection schemes, which belong to well-known multi-objective optimisers, are considered. The paper aims to discuss these issues.

Design/methodology/approach

Each of those mechanisms is incorporated into a common multi-objective evolutionary algorithm framework. The main goal of the study is to measure the diversity preserved by each of those selection methods when addressing many-objective optimisation problems. The Walking Fish Group test suite, a set of optimisation problems with a scalable number of objective functions, is taken into account to perform the experimental evaluation.

Findings

The computational results highlight that the the reference-point-based selection scheme of the Non-dominated Sorting Genetic Algorithm III and a modified version of the Non-dominated Sorting Genetic Algorithm II, where the crowding distance is replaced by the Euclidean distance, are able to provide the best performance, not only in terms of diversity preservation, but also in terms of convergence.

Originality/value

The performance provided by the use of the Euclidean distance as part of the selection scheme indicates this is a promising line of research and, to the best of the knowledge, it has not been investigated yet.

Article
Publication date: 10 June 2021

Parames Chutima and Jurairat Chimrakhang

This paper aims to evaluate two operational modes of the worker allocation problem (WAP) in the multiple U-line system (MULS). Five objectives are optimised simultaneously for the…

Abstract

Purpose

This paper aims to evaluate two operational modes of the worker allocation problem (WAP) in the multiple U-line system (MULS). Five objectives are optimised simultaneously for the most complicated operational modes, i.e. machine-dominant working and fixed-station walking. Besides, the benefits of using multiline workstations (MLWs) are investigated.

Design/methodology/approach

The elite non-dominated sorting differential evolutionary III (ENSDE III) algorithm is developed as a solution technique. Also, the largest remaining available time heuristic is proposed as a baseline in determining the number and utilisation of workers when the use of MLWs is not allowed.

Findings

ENSDE III outperforms the cutting-edged multi-objective evolutionary algorithms, i.e. multi-objective evolutionary algorithm based on decomposition and non-dominated sorting differential evolutionary III, under two key Pareto metrics, i.e. generational distance and inverted generational distance, regardless of the problem size. The best-found number of workers from ENSDE III is substantially lower than the upper bound. The MULS with MLWs requires fewer workers than the one without.

Research limitations/implications

Although this research has extended several issues in the basic model of multiple U-line systems, some assumptions were used to facilitate mathematical computation as follows. The U-line system in this research assumed that all lines were produced only a single product. Besides, all workers were well-trained to gain the same skill. These assumptions could be extended in the future.

Practical implications

The implication of this research is the benefits of multiline workstations (MLWs) used in the multiple U-line system. Instead of leaving each individual line to operate independently, all lines should be working in parallel through the use of MLWs to gain benefits in terms of worker reduction, balancing worker’s workload, higher system utilisation.

Originality/value

This research is the first to address the WAP in the MULS with machine-dominant working and fixed-station walking modes. Worker’s fatigue due to standing and walking while working is incorporated into the model. The novel ENSDE III algorithm is developed to optimise the multi-objective WAP in a Pareto sense. The benefits of exploiting MLWs are also illustrated.

Details

Assembly Automation, vol. 41 no. 4
Type: Research Article
ISSN: 0144-5154

Keywords

Article
Publication date: 16 May 2019

Abhilasha Panwar, Kamalendra Kumar Tripathi and Kumar Neeraj Jha

The purpose of this paper is to develop a qualitative framework for the selection of the most appropriate optimization algorithm for the multi-objective trade-off problem (MOTP…

Abstract

Purpose

The purpose of this paper is to develop a qualitative framework for the selection of the most appropriate optimization algorithm for the multi-objective trade-off problem (MOTP) in construction projects based on the predefined performance parameters.

Design/methodology/approach

A total of 6 optimization algorithms and 13 performance parameters were identified through literature review. The experts were asked to indicate their preferences between each pair of optimization algorithms and performance parameters. A multi-criteria decision-making tool, namely, consistent fuzzy preference relation was applied to analyze the responses of the experts. The results from the analysis were applied to evaluate their relative weights which were used to provide a ranking to the algorithms.

Findings

This study provided a qualitative framework which can be used to identify the most appropriate optimization algorithm for the MOTP beforehand. The outcome suggested that non-dominated sorting genetic algorithm (NSGA) was the most appropriate algorithm whereas linear programming was found to be the least appropriate for MOTPs.

Originality/value

The devised framework may provide a useful insight for the construction practitioners to choose an effective optimization algorithm tool for preparing an efficient project schedule aiming toward the desired optimal improvement in achieving the various objectives. Identification of the absolute best optimization algorithm is very difficult to attain due to various problems such as the inherent complexities and intricacies of the algorithm and different class of problems. However, the devised framework offers a primary insight into the selection of the most appropriate alternative among the available algorithms.

Details

Engineering, Construction and Architectural Management, vol. 26 no. 9
Type: Research Article
ISSN: 0969-9988

Keywords

1 – 10 of 15