Search results

1 – 10 of 570
Article
Publication date: 15 May 2009

B. Markicevic and H.K. Navaz

The purpose of this paper is to develop a general numerical solution for the wetting fluid spread into porous media that can be used in solving of droplet spread into soils…

Abstract

Purpose

The purpose of this paper is to develop a general numerical solution for the wetting fluid spread into porous media that can be used in solving of droplet spread into soils, printing applications, fuel cells, composite processing.

Design/methodology/approach

A discrete capillary network model based on micro‐force balance is numerically implemented and the flow for an arbitrary capillary number can be solved. At the fluid interface, the boundary condition that accounts for the capillary pressure jump is used.

Findings

The wetting fluid spread into porous medium starts as a single‐phase flow, and after some particular number of the porous medium characteristic length scales, the multi‐phase flow pattern occurs. Hence, in the principal flow direction, the phase content (saturation) decreases, and in the lower limit for the capillary number sufficiently small, the saturation should become constant. This qualitative saturation behavior is observed irrespective of the flow dimensionality, whereas the quantitative results vary for different flow systems.

Research limitations/implications

The numerical solution has to be expanded to solve the spread of the fluid in the porous medium after there is no free fluid left at the porous medium surface.

Practical implications

It is shown that the multi‐phase flow can develop even on a small domain due to the porous medium heterogeneity. Neglecting the medium heterogeneity and flow type can lead to a large error as shown for the droplet spread time in the porous medium.

Originality/value

This is believe to be the only paper relating to solving the droplet spread into porous medium as a multi‐phase flow problem.

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. 19 no. 3/4
Type: Research Article
ISSN: 0961-5539

Keywords

Article
Publication date: 17 May 2021

Akash K. Gupta, Rahul Yadav, Malay K. Das and Pradipta K. Panigrahi

This paper aims to present the implementation of a multi-layer radiation propagation model in simulations of multi-phase flow and heat transfer, for a dissociating methane hydrate…

Abstract

Purpose

This paper aims to present the implementation of a multi-layer radiation propagation model in simulations of multi-phase flow and heat transfer, for a dissociating methane hydrate reservoir subjected to microwave heating.

Design/methodology/approach

To model the induced heterogeneity due to dissociation of hydrates in the reservoir, a multiple homogeneous layer approach, used in food processes modelling, is suggested. The multi-layer model is incorporated in an in-house, multi-phase, multi-component hydrate dissociation simulator based on the finite volume method. The modified simulator is validated with standard experimental results in the literature and subsequently applied to a hydrate reservoir to study the effect of water content and sand dielectric nature on radiation propagation and hydrate dissociation.

Findings

The comparison of the multi-layer model with experimental results show a maximum difference in temperature estimation to be less than 2.5 K. For reservoir scale simulations, three homogeneous layers are observed to be sufficient to model the induced heterogeneity. There is a significant contribution of dielectric properties of sediments and water content of the reservoir in microwave radiation attenuation and overall hydrate dissociation. A high saturation reservoir may not always provide high gas recovery by dissociation of hydrates in the case of microwave heating.

Originality/value

The multi-layer approach to model microwave radiation propagation is introduced and tested for the first time in dissociating hydrate reservoirs. The multi-layer model provides better control over reservoir heterogeneity and interface conditions compared to existing homogeneous models.

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. 32 no. 2
Type: Research Article
ISSN: 0961-5539

Keywords

Article
Publication date: 27 May 2014

Artur Tyliszczak

Variable density flows play an important role in many technological devices and natural phenomena. The purpose of this paper is to develop a robust and accurate method for low…

Abstract

Purpose

Variable density flows play an important role in many technological devices and natural phenomena. The purpose of this paper is to develop a robust and accurate method for low Mach number flows with large density and temperature variations.

Design/methodology/approach

Low Mach number approximation approach is used in the paper combined with a predictor-corrector method and accurate compact scheme of fourth and sixth order. A novel algorithm is formulated for the projection method in which the boundary conditions for the pressure are implemented in such a way that the continuity equation is fulfilled everywhere in the computational domain, including the boundary nodes.

Findings

It is shown that proposed implementation of the boundary conditions considerably improves a solution accuracy. Assessment of the accuracy was performed based on the constant density Burggraf flow and for two benchmark cases for the natural convection problems: steady flow in a square cavity and unsteady flow in a tall cavity. In all the cases the results agree very well with exemplary solutions.

Originality/value

A staggered or half-staggered grid arrangement is usually used for the projection method for both constant and low Mach number flows. The staggered approach ensures stability and strong pressure-velocity coupling. In the paper a high-order compact method has been implemented in the framework of low Mach number approximation on collocated meshes. The resulting algorithm is accurate, robust for large density variations and is almost free from the pressure oscillations.

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. 24 no. 5
Type: Research Article
ISSN: 0961-5539

Keywords

Article
Publication date: 29 August 2019

Abdelraheem M. Aly

This paper aims to adopt incompressible smoothed particle hydrodynamics (ISPH) method to simulate MHD double-diffusive natural convection in a cavity containing an oscillating…

127

Abstract

Purpose

This paper aims to adopt incompressible smoothed particle hydrodynamics (ISPH) method to simulate MHD double-diffusive natural convection in a cavity containing an oscillating pipe and filled with nanofluid.

Design/methodology/approach

The Lagrangian description of the governing partial differential equations are solved numerically using improved ISPH method. The inner oscillating pipe is divided into two different pipes as an open and a closed pipe. The sidewalls of the cavity are cooled with a lower concentration C_c and the horizontal walls are adiabatic. The inner pipe is heated with higher concentration C_h. The analysis has been conducted for the two different cases of inner oscillating pipes under the effects of wide range of governing parameters.

Findings

It is found that a suitable oscillating pipe makes a well convective transport inside a cavity. Presence of the oscillating pipe has effects on the heat and mass transfer and fluid intensity inside a cavity. Hartman parameter suppresses the velocity and weakens the maximum values of the stream function. An increase on Hartman, Lewis and solid volume fraction parameters leads to an increase on average Nusselt number on an oscillating pipe and left cavity wall. Average Sherwood number on an oscillating pipe and left cavity wall decreases as Hartman parameter increases.

Originality/value

The main objective of this work is to study the MHD double-diffusive natural convection of a nanofluid in a square cavity containing an oscillating pipe using improved ISPH method.

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. 30 no. 2
Type: Research Article
ISSN: 0961-5539

Keywords

Article
Publication date: 22 December 2023

Hafeeza Mamoojee-Khatib, Jiju Antony, Viraiyan Teeroovengadum, Jose Arturo Garza-Reyes, Guilherme Luz Tortorella, Monika Foster and Elizabeth A. Cudney

The purpose of this study is to carry out a comprehensive systematic review of lean implementation frameworks and roadmaps developed over the past decade and report the key…

Abstract

Purpose

The purpose of this study is to carry out a comprehensive systematic review of lean implementation frameworks and roadmaps developed over the past decade and report the key findings along with the limitations and the way forward.

Design/methodology/approach

A systematic review methodology proposed by Tranfield (2003), was followed to identify the relevant works on the research topic. Articles were searched using a set of inclusion criteria in various databases including Google Scholar, Web of Science and Science Direct over a period of 30 years.

Findings

The high failure rate of lean system implementation, reaching a range between 70 and 90% in almost all industries, is a matter of concern. This failure rate is still high even though numerous frameworks and roadmap models exist to streamline lean implementation. There is no standard framework or roadmap identified in the literature and many organisations are implementing lean in their unique ways. However, it would be desirable to develop a practical and systematic roadmap on lean-looking into the cultural and leadership dimensions rather than focusing on a set of tools. Moreover, most frameworks and roadmaps lack the sustenance aspects of lean implementation.

Research limitations/implications

This research only identifies the fundamental gaps with the existing frameworks and roadmaps on lean implementation. The next phase of the research is to develop a roadmap and validate it with a number of organisations in different cultural contexts and leadership styles.

Originality/value

The authors argue that this is one of the most comprehensive systematic review on lean frameworks and roadmaps, ever produced in the literature to date.

Details

The TQM Journal, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 1754-2731

Keywords

Article
Publication date: 14 June 2011

Yi Heng, Maka Karalashvili, Adel Mhamdi and Wolfgang Marquardt

The purpose of this paper is to present an efficient algorithm based on a multi‐level adaptive mesh refinement strategy for the solution of ill‐posed inverse heat conduction…

Abstract

Purpose

The purpose of this paper is to present an efficient algorithm based on a multi‐level adaptive mesh refinement strategy for the solution of ill‐posed inverse heat conduction problems arising in pool boiling using few temperature observations.

Design/methodology/approach

The stable solution of the inverse problem is obtained by applying the conjugate gradient method for the normal equation method together with a discrepancy stopping rule. The resulting three‐dimensional direct, adjoin and sensitivity problems are solved numerically by a space‐time finite element method. A multi‐level computational approach, which uses an a posteriori error estimator to adaptively refine the meshes on different levels, is proposed to speed up the entire inverse solution procedure.

Findings

This systematic approach can efficiently solve the large‐scale inverse problem considered without losing necessary detail in the estimated quantities. It is shown that the choice of different termination parameters in the discrepancy stopping conditions for each level is crucial for obtaining a good overall estimation quality. The proposed algorithm has also been applied to real experimental data in pool boiling. It shows high computational efficiency and good estimation quality.

Originality/value

The high efficiency of the approach presented in the paper allows the fast processing of experimental data at many operating conditions along the entire boiling curve, which has been considered previously as computationally intractable. The present study is the authors' first step towards a systematic approach to consider an adaptive mesh refinement for the solution of large‐scale inverse boiling problems.

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. 21 no. 5
Type: Research Article
ISSN: 0961-5539

Keywords

Article
Publication date: 12 August 2021

Liangjie Mao, Mingjie Cai, Qingyou Liu and Ying Zhang

The purpose of this paper is to study the multi-phase flow behaviors in solid fluidization exploitation of natural gas hydrate (NGH) and its effect on the engineering safety.

Abstract

Purpose

The purpose of this paper is to study the multi-phase flow behaviors in solid fluidization exploitation of natural gas hydrate (NGH) and its effect on the engineering safety.

Design/methodology/approach

In this paper, a multi-phase flow model considering the endothermic decomposition of hydrate is established and finite difference method is used to solve the mathematical model. The model is validated by reproducing the field test data of a well in Shenhu Sea area. Besides, optimization of design parameters is presented to ensure engineering safety during the solid fluidization exploitation of NGH in South China Sea.

Findings

To ensure the engineering safety during solid fluidization exploitation of marine NGH, taking the test well as an example, a drilling flow rate range of 40–50 L/s, drilling fluid density range of 1.2–1.23 g/cm3 and rate of penetration (ROP) range of 10–20 m/h should be recommended. Besides, pre-cooled drilling fluid is also helpful for inhibiting hydrate decomposition.

Originality/value

Systematic research on the effect of multiphase flow behaviors on the engineering safety is scare, especially for the solid fluidization exploitation of NGH in South China Sea. With the growing demand for energy, it is of great significance to ensure the engineering safety before the large-scale extraction of commercial gas from hydrate deposits. The result of this study can provide profound theoretical bases and valuable technical guidance for the commercial solid fluidization exploitation of NGH in South China Sea.

Details

Engineering Computations, vol. 39 no. 3
Type: Research Article
ISSN: 0264-4401

Keywords

Article
Publication date: 2 November 2015

Cheng Gao, Rui-Na Xu and Pei-Xue Jiang

Lattice Boltzmann method (LBM) is employed to explore friction factor of single-phase fluid flow through porous media and the effects of local porous structure including geometry…

Abstract

Purpose

Lattice Boltzmann method (LBM) is employed to explore friction factor of single-phase fluid flow through porous media and the effects of local porous structure including geometry of grains in porous media and specific surface of porous media on two-phase flow dynamic behavior, phase distribution and relative permeability. The paper aims to discuss this issue.

Design/methodology/approach

The 3D single-phase LBM model and the 2D multi-component multi-phase Shan-Chen LBM model (S-C model) are developed for fluid flow through porous media. For the solid site, the bounce back scheme is used with non-slip boundary condition.

Findings

The predicted friction factor for single-phase fluid flow agrees well with experimental data and the well-known correlation. Compared with porous media with square grains, the two-phase fluids in porous media with circle grains are more connected and continuous, and consequently the relative permeability is higher. As for the factor of specific porous media surface, the relative permeability of wetting fluids varies a little in two systems with different specific surface areas. In addition, the relative permeability of non-wetting fluid decreases with the increasing of specific surface of porous media due to the large flow resistance.

Originality/value

Fluid-fluid interaction and fluid-solid interaction in the SC LBM model are presented, and schemes to obtain immiscible two-phase flow and different contact angles are discussed. Two-off mechanisms acting on the wetting fluids is proposed to illustrate the relative permeability of wetting fluids varies a little in two systems with different specific surface.

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. 25 no. 8
Type: Research Article
ISSN: 0961-5539

Keywords

Article
Publication date: 7 April 2015

Abdelraheem Mahmoud Aly

Modeling of multi-phase flows for Rayleigh-Taylor instability and natural convection in a square cavity has been investigated using an incompressible smoothed particle…

Abstract

Purpose

Modeling of multi-phase flows for Rayleigh-Taylor instability and natural convection in a square cavity has been investigated using an incompressible smoothed particle hydrodynamics (ISPH) technique. In this technique, incompressibility is enforced by using SPH projection method and a stabilized incompressible SPH method by relaxing the density invariance condition is applied. The paper aims to discuss these issues.

Design/methodology/approach

The Rayleigh-Taylor instability is introduced in two and three phases by using ISPH method. The author simulated natural convection in a square/cubic cavity using ISPH method in two and three dimensions. The solutions represented in temperature, vertical velocity and horizontal velocity have been studied with different values of Rayleigh number Ra parameter (103=Ra=105). In addition, characteristic based scheme in Finite Element Method is introduced for modeling the natural convection in a square cavity.

Findings

The results for Rayleigh-Taylor instability and natural convection flow had been compared with the previous researches.

Originality/value

Modeling of multi-phase flows for Rayleigh-Taylor instability and natural convection in a square cavity has been investigated using an ISPH technique. In ISPH method, incompressibility is enforced by using SPH projection method and a stabilized incompressible SPH method by relaxing the density invariance condition is introduced. The Rayleigh-Taylor instability is introduced in two and three phases by using ISPH method. The author simulated natural convection in a square/cubic cavity using ISPH method in two and three dimensions.

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. 25 no. 3
Type: Research Article
ISSN: 0961-5539

Keywords

Article
Publication date: 8 May 2018

Farhang Behrangi, Mohammad Ali Banihashemi, Masoud Montazeri Namin and Asghar Bohluly

This paper aims to present a novel numerical technique for solving the incompressible multiphase mixture model.

Abstract

Purpose

This paper aims to present a novel numerical technique for solving the incompressible multiphase mixture model.

Design/methodology/approach

The multiphase mixture model contains a set of momentum and continuity equations for the mixture phase, a second phase continuity equation and the algebraic equation for the relative velocity. For solving continuity equation for the second phase and advection term of momentum, an improved approach fine grid advection-multiphase mixture flow (FGA-MMF) is developed. In the FGA-MMF method, the continuity equation for the second phase is solved with higher-order schemes in a two times finer grid. To solve the advection term of the momentum equation, the advection fluxes of the volume fraction in the continuity equation for the second phase are used.

Findings

This approach has been used in various tests to simulate unsteady flow problems. Comparison between numerical results and experimental data demonstrates a satisfactory performance. Numerical examples show that this approach increases the accuracy and stability of the solution and decreases non-monotonic results.

Research limitations/implications

The solver for the multi-phase mixture model can only be adopted to solve the incompressible fluid flow.

Originality/value

The paper developed an innovative solution (FGA-MMF) to find multi-phase flow field value in the multi-phase mixture model. Advantages of the FGA-MMF technique are the ability to accurately determine the phases interpenetrating, decreasing the numerical diffusion of the interface and preventing instability and non-monotonicity in solution of large density variation problems.

Details

Engineering Computations, vol. 35 no. 3
Type: Research Article
ISSN: 0264-4401

Keywords

1 – 10 of 570