Search results

1 – 10 of 460
Article
Publication date: 26 March 2021

Xianyi Xie, Lisheng Jin, Guo Baicang and Jian Shi

This study aims to propose an improved linear quadratic regulator (LQR) based on the adjusting weight coefficient, which is used to improve the performance of the vehicle direct…

Abstract

Purpose

This study aims to propose an improved linear quadratic regulator (LQR) based on the adjusting weight coefficient, which is used to improve the performance of the vehicle direct yaw moment control (DYC) system.

Design/methodology/approach

After analyzing the responses of the side-slip angle and the yaw rate of the vehicle when driving under different road adhesion coefficients, the genetic algorithm and fuzzy logic theory were applied to design the parameter regulator for an improved LQR. This parameter regulator works according to the changes in the road adhesion coefficient between the tires and the road. Hardware-in-the-loop (HiL) tests with double-lane changes under low and high road surface adhesion coefficients were carried out.

Findings

The HiL test results demonstrate the proposed controllers’ effectiveness and reasonableness and satisfy the real-time requirement. The effectiveness of the proposed controller was also proven using the vehicle-handling stability objective evaluation method.

Originality/value

The objective evaluation results reveal better performance using the improved LQR DYC controller than a front wheel steering vehicle, especially in reducing driver fatigue, improving vehicle-handling stability and enhancing driving safety.

Details

Industrial Robot: the international journal of robotics research and application, vol. 48 no. 3
Type: Research Article
ISSN: 0143-991X

Keywords

Open Access
Article
Publication date: 2 June 2023

Sebastian Topczewski and Przemyslaw Bibik

The purpose of this study is to test the performance of the designed automatic control system based on the Linear Quadratic Regulator (LQR) and Linear Quadratic Gaussian (LQG…

Abstract

Purpose

The purpose of this study is to test the performance of the designed automatic control system based on the Linear Quadratic Regulator (LQR) and Linear Quadratic Gaussian (LQG) algorithms during landing of the helicopter on the ship deck. This paper is a further development of the series based on Topczewski et al. (2020).

Design/methodology/approach

The system consists of two automatic control algorithms based on LQR and the LQG. It is integrated with the ship motion prediction system based on autoregressive algorithm with parameters calculated using Burg’s method. It is assumed that the source of necessary navigation data is integrated Inertial Navigation System with Global Positioning System. Landing of the helicopter on the ship deck is performed in automatic way, based on the preselected procedure. Performance of the control system is analyzed when all necessary navigation data is available for the system and in case when one of the parameters is unavailable during performing the procedure.

Findings

In this paper, description of the designed control system developed for performing the approach and landing of the helicopter using selected procedure is presented. Helicopter dynamic model is validated using the manufacturer data and by test pilots, overview is presented. Necessary information about ship motion model is also included. Tests showing mission performance while using LQR and LQG algorithms applied to the control system are presented and analyzed, taking into account both situations when full navigation data is available/unavailable for the control system.

Practical implications

Results of the system performance analyses can be used for selection of the proper control methodology for prospective helicopters autopilots. Furthermore, the system can be used to analyze the mission safety when information about one of the navigation parameters is identified by the navigation system as unavailable or incorrect and therefore unavailable during landing on the ship deck.

Originality/value

In this paper, control system dedicated for the automatic landing of the helicopter on the ship deck, based on two different control algorithms is presented. Influence of lack of information about one of the navigation parameters on the mission performance is analyzed.

Details

Aircraft Engineering and Aerospace Technology, vol. 95 no. 9
Type: Research Article
ISSN: 1748-8842

Keywords

Article
Publication date: 6 March 2017

Javad Tayebi, Amir Ali Nikkhah and Jafar Roshanian

The purpose of the paper is to design a new attitude stabilization system for a microsatellite based on single gimbal control moment gyro (SGCMG) in which the gimbal rates are…

Abstract

Purpose

The purpose of the paper is to design a new attitude stabilization system for a microsatellite based on single gimbal control moment gyro (SGCMG) in which the gimbal rates are selected as controller parameters.

Design/methodology/approach

In the stability mode, linear quadratic regulator (LQR) and linear quadratic Gaussian (LQG) control strategies are presented with the gimbal rates as a controller parameters. Instead of developing a control torque to solve the attitude problem, the attitude controller is developed in terms of the control moment gyroscope gimbal angular velocities. Attitude control torques are generated by means of a four SGCMG pyramid cluster.

Findings

Numerical simulation results are provided to show the efficiency of the proposed controllers. Simulation results show that this method could stabilize satellite from initial condition with large angles and with more accuracy in comparison with feedback quaternion and proportional-integral-derivative controllers. These results show the effect of filtering the noisy signal in the LQG controller. LQG in comparison to LQR is more realistic.

Practical implications

The LQR method is more appropriate for the systems that have project models reasonably exact and ideal sensors/actuators. LQG is more realistic, and it can be used when not all of the states are available or when the system presents noises. LQR/LQG controller can be used in the stabilization mode of satellite attitude control.

Originality/value

The originality of this paper is designing a new attitude stabilization system for an agile microsatellite using LQR and LQG controllers.

Details

Aircraft Engineering and Aerospace Technology, vol. 89 no. 2
Type: Research Article
ISSN: 1748-8842

Keywords

Article
Publication date: 9 June 2023

Haylim Chha and Yongbo Peng

In real life, excitations are highly non-stationary in frequency and amplitude, which easily induces resonant vibration to structural responses. Conventional control algorithms in…

3148

Abstract

Purpose

In real life, excitations are highly non-stationary in frequency and amplitude, which easily induces resonant vibration to structural responses. Conventional control algorithms in this case cannot guarantee cost-effective control effort and efficient structural response alleviation. To this end, this paper proposes a novel adaptive linear quadratic regulator (LQR) by integrating wavelet transform and genetic algorithm (GA).

Design/methodology/approach

In each time interval, multiresolution analysis of real-time structural responses returns filtered time signals dominated by different frequency bands. Minimization of cost function in each frequency band obtains control law and gain matrix that depend on temporal-frequency band, so suppressing resonance-induced filtered response signal can be directly achieved by regulating gain matrix in the temporal-frequency band, leading to emphasizing cost-function weights on control and state. To efficiently subdivide gain matrices in resonant and normal frequency bands, the cost-function weights are optimized by a developed procedure associated to genetic algorithm. Single-degree-of-freedom (SDOF) and multi-degree-of-freedom (MDOF) structures subjected to near- and far-fault ground motions are studied.

Findings

Resonant band requires a larger control force than non-resonant band to decay resonance-induced peak responses. The time-varying cost-function weights generate control force more cost-effective than time-invariant ones. The scheme outperforms existing control algorithms and attains the trade-off between response suppression and control force under non-stationary excitations.

Originality/value

Proposed control law allocates control force amounts depending upon resonant or non-resonant band in each time interval. Cost-function weights and wavelet decomposition level are formulated in an elegant manner. Genetic algorithm-based optimization cost-efficiently results in minimizing structural responses.

Article
Publication date: 17 September 2021

Yan Qian, Zhaoqiang Wang, Wei Liang and Chenhui Lu

The purpose of this study is to solve the problem of path planning and path tracking in the automatic parking assistant system.

Abstract

Purpose

The purpose of this study is to solve the problem of path planning and path tracking in the automatic parking assistant system.

Design/methodology/approach

This paper first uses the method of reverse driving to confirm few control points based on the constraints of the construction of the vehicle and the environment information, then a reference path with free-collision and continuous curvature is designed based on the Bézier curve. According to the principle of the discrete linear quadratic regulator (LQR), a tracking controller that combines feedforward control and feedback control is designed.

Findings

Finally, simulation analysis are carried out in Simulink and CARSIM. The results show that the proposed method can obtain a better path tracking effect when the parking space size is appropriate.

Originality/value

According to the principle of the discrete LQR, a tracking controller that combines feedforward control and feedback control is designed.

Details

Engineering Computations, vol. 39 no. 3
Type: Research Article
ISSN: 0264-4401

Keywords

Article
Publication date: 3 October 2016

Yongbin Sun, Ning Xian and Haibin Duan

The purpose of this paper is to propose a new algorithm for linear-quadratic regulator (LQR) controller of a quadrotor with fast and stable performance, which is based on…

Abstract

Purpose

The purpose of this paper is to propose a new algorithm for linear-quadratic regulator (LQR) controller of a quadrotor with fast and stable performance, which is based on pigeon-inspired optimization (PIO).

Design/methodology/approach

The controller is based on LQR. The determinate parameters are optimized by PIO, which is a newly proposed swarm intelligent algorithm inspired by the characteristics of homing pigeons.

Findings

The PIO-optimized LQR controller can obtain the optimized parameters and achieve stabilization in about 3 s.

Practical implications

The PIO-optimized LQR controller can be easily applied to the flight formation, autonomous aerial refueling (AAR) and detection of unmanned aerial vehicles, especially applied to (AAR) in this paper.

Originality/value

This research applies PIO to optimize the tuning parameters of LQR, which can considerably improve the fast and stabilizing performance of attitude control. The simulation results show the effectiveness of the proposed algorithm.

Details

Aircraft Engineering and Aerospace Technology, vol. 88 no. 6
Type: Research Article
ISSN: 1748-8842

Keywords

Article
Publication date: 14 March 2019

Antoni Kopyt, Sebastian Topczewski, Marcin Zugaj and Przemyslaw Bibik

The purpose of this paper is to elaborate and develop an automatic system for automatic flight control system (AFCS) performance evaluation. Consequently, the developed AFCS…

Abstract

Purpose

The purpose of this paper is to elaborate and develop an automatic system for automatic flight control system (AFCS) performance evaluation. Consequently, the developed AFCS algorithm is implemented and tested in a virtual environment on one of the mission task elements (MTEs) described in Aeronautical Design Standard 33 (ADS-33) performance specification.

Design/methodology/approach

Control algorithm is based on the Linear Quadratic Regulator (LQR) which is adopted to work as a controller in this case. Developed controller allows for automatic flight of the helicopter via desired three-dimensional trajectory by calculating iteratively deviations between desired and actual helicopter position and multiplying it by gains obtained from the LQR methodology. For the AFCS algorithm validation, the objective data analysis is done based on specified task accomplishment requirements, reference trajectory and actual flight parameters.

Findings

In the paper, a description of an automatic flight control algorithm for small helicopter and its evaluation methodology is presented. Necessary information about helicopter dynamic model is included. The test and algorithm analysis are performed on a slalom maneuver, on which the handling qualities are calculated.

Practical implications

Developed automatic flight control algorithm can be adapted and used in autopilot for a small helicopter. Methodology of evaluation of an AFCS performance can be used in different applications and cases.

Originality/value

In the paper, an automatic flight control algorithm for small helicopter and solution for the validation of developed AFCS algorithms are presented.

Details

Aircraft Engineering and Aerospace Technology, vol. 91 no. 6
Type: Research Article
ISSN: 1748-8842

Keywords

Article
Publication date: 5 July 2021

Wang Jianhong

The purpose of this paper is to derive the output predictor for a stationary normal process with rational spectral density and linear stochastic discrete-time state-space model…

Abstract

Purpose

The purpose of this paper is to derive the output predictor for a stationary normal process with rational spectral density and linear stochastic discrete-time state-space model, respectively, as the output predictor is very important in model predictive control. The derivations are only dependent on matrix operations. Based on the output predictor, one quadratic programming problem is constructed to achieve the goal of subspace predictive control. Then an improved ellipsoid optimization algorithm is proposed to solve the optimal control input and the complexity analysis of this improved ellipsoid optimization algorithm is also given to complete the previous work. Finally, by the example of the helicopter, the efficiency of the proposed control strategy can be easily realized.

Design/methodology/approach

First, a stationary normal process with rational spectral density and one stochastic discrete-time state-space model is described. Second, the output predictors for these two forms are derived, respectively, and the derivation processes are dependent on the Diophantine equation and some basic matrix operations. Third, after inserting these two output predictors into the cost function of predictive control, the control input can be solved by using the improved ellipsoid optimization algorithm and the complexity analysis corresponding to this improved ellipsoid optimization algorithm is also provided.

Findings

Subspace predictive control can not only enable automatically tune the parameters in predictive control but also avoids many steps in classical linear Gaussian control. It means that subspace predictive control is independent of any prior knowledge of the controller. An improved ellipsoid optimization algorithm is used to solve the optimal control input and the complexity analysis of this algorithm is also given.

Originality/value

To the best knowledge of the authors, this is the first attempt at deriving the output predictors for stationary normal processes with rational spectral density and one stochastic discrete-time state-space model. Then, the derivation processes are dependent on the Diophantine equation and some basic matrix operations. The complexity analysis corresponding to this improved ellipsoid optimization algorithm is analyzed.

Details

Aircraft Engineering and Aerospace Technology, vol. 93 no. 5
Type: Research Article
ISSN: 1748-8842

Keywords

Article
Publication date: 16 October 2009

R. Ozgur Doruk

The purpose of this paper is to design and simulate a linearized attitude stabilizer based on linear quadratic regulator theory (LQR) using the multiplicative definition of the…

Abstract

Purpose

The purpose of this paper is to design and simulate a linearized attitude stabilizer based on linear quadratic regulator theory (LQR) using the multiplicative definition of the attitude.

Design/methodology/approach

The attitude is modeled by the modified Rodriguez parameters that provide a minimal representation of attitude and always invertible kinematics. The nonlinear model of the satellite attitude dynamics is linearized around the origin and an LQR is proposed for the linearized design. They are also simulated using the original nonlinear satellite dynamics in order to verify that the controller is operating properly. Simulations include randomly selected initial conditions to justify the stability against various initial conditions.

Findings

Theoretically, the resultant controllers are locally stable around the origin. However, the simulation results show that the attitude is well regulated in the presence of both inertia uncertainties and random initial conditions.

Originality/value

The originality of this work is due to its demonstration that complicated attitude regulators are not the solution for proper satellite or spacecraft attitude stabilization.

Details

Aircraft Engineering and Aerospace Technology, vol. 81 no. 6
Type: Research Article
ISSN: 0002-2667

Keywords

Article
Publication date: 18 April 2016

Nugroho Gesang

During flight, a small-size autonomous helicopter will suffer external disturbance that is wind gust. Moreover, the small-size helicopter can carries limited payload or battery…

Abstract

Purpose

During flight, a small-size autonomous helicopter will suffer external disturbance that is wind gust. Moreover, the small-size helicopter can carries limited payload or battery. Therefore control system of an autonomous helicopter should be able to eliminate external disturbance and optimize energy consumption. The purpose of this paper is to propose a hybrid controller structure to control a small-size autonomous helicopter capable to eliminate external disturbance and optimize energy consumption. The proposed control strategy comprise of two components, a linear component to stabilize the nominal linear system and a discontinuous component to guarantee the robustness. An integral control is included in the system to eliminate steady state error and tracking reference input.

Design/methodology/approach

This research started with derived mathematic model of the small-size helicopter that will be controlled. Based on the obtained mathematic model, then design of a hybrid controller to control the autonomous helicopter. The hybrid controller was designed based on optimal controller and sliding mode controller. The optimal controller as main controller is used to stabilize the nominal linear system and a discontinuous component based on sliding mode controller to guarantee the robustness.

Findings

Performance of the proposed controller was tested in simulation. The hybrid controller performance was compared with optimal controller performance. The hybrid controller has better performance compared with optimal controller. Results of the simulation shows that the proposed controller has good performance and robust against external disturbances. The proposed controller has better performance in rise time, settling time and overshoot compared with optimal controller response both for step input response and tracking capability.

Originality/value

Hybrid controller to control small-size helicopter has not reported yet. In this research new hybrid controller structure for a small size autonomous helicopter was proposed.

Details

International Journal of Intelligent Unmanned Systems, vol. 4 no. 2
Type: Research Article
ISSN: 2049-6427

Keywords

1 – 10 of 460