Search results

1 – 8 of 8
Article
Publication date: 16 November 2021

Junguo Wang, Zhaoyuan Yao, M.F. Hassan and Yongxiang Zhao

The paper is devoted to presenting a systematic investigation on the mechanical model and nonlinear dynamic characteristics of spur gear system with and without input shaft crack.

Abstract

Purpose

The paper is devoted to presenting a systematic investigation on the mechanical model and nonlinear dynamic characteristics of spur gear system with and without input shaft crack.

Design/methodology/approach

Considering the backlash, load-distribution, time-varying meshing stiffness and sliding friction, the modelling of a 5DOF gear system is proposed. Likewise, stiffness and damping models under elastohydrodynamic lubrication are developed, and sliding friction between gear pair is also outlined. In particular, a cracked input shaft which affects the support stiffness is presented, and breathing crack in keyway is adopted. On this basis, the dynamic responses of a gear system with and without input shaft crack are examined using numerical method, and some classical response diagrams are given, illustrating the effect of the important parameters on the gear system.

Findings

Dynamic simulation demonstrates that there exist periodic, quasi-periodic and chaotic motions in the gear system, and rational speed of the gear pair has noteworthy effects on vibration characteristic. Besides, comparison between healthy and cracked condition of input shaft indicates that occurring of crack convert periodic motion to quasi-periodic or chaotic motion.

Originality/value

The results give an understanding of the operating conditions under which undesirable dynamic behavior occurs, and provide some useful information to design and diagnose such gear system with crack fault.

Details

Engineering Computations, vol. 39 no. 5
Type: Research Article
ISSN: 0264-4401

Keywords

Article
Publication date: 6 February 2023

Yang Juping, Junguo Wang and Zhao Yongxiang

The purpose of this paper is to investigate the non-linear characteristics and stability of the rolling bearing–axle coupling system under the excitation of the axle/wheel speed…

Abstract

Purpose

The purpose of this paper is to investigate the non-linear characteristics and stability of the rolling bearing–axle coupling system under the excitation of the axle/wheel speed of railway freight cars, so as to put forward a rationale for judging the vibration law and running stability of railway freight wagon.

Design/methodology/approach

Considering the effects of eccentric force of the railway wagon axle, the non-linear resistance of the wagon and non-linear support forces of axle box rolling bearings, a centralized mass model of rolling bearing-axle coupling system of railway freight wagon is presented on the basis of the theory of rotor dynamics and non-linear dynamics. Then the Runge-Kutta method is adopted to solve the non-linear response of the proposed system, and numerical simulation including bifurcation diagrams, axis trajectory curves, phase plane plots, Poincaré sections and amplitude spectras are analysed when the axle rotating speed is changed. Meantime, the relation curve between Floquet multiplier and axle rotating speed, which affects the stability of coupling system, is plotted by numerical method based on the Floquet theory and method.

Findings

The simulation results of the dynamic model reveal the abundant dynamic behaviour of the coupling system when the axle rotating speed changes, including single period, quasi period, multi-period and chaotic motion, as well as the evolution law from multi-period motion to chaotic motion. And especially, the bearing–axle coupling system is in stable state with a single period motion when the axle rotating speed changes from 410 rpm to 510 rpm, in which the running speed of railway freight wagon is changed from 62 km/h to 80 km/h, the vibration displacement of the coupling system in X direction is between 1.2 mm and 1.8 mm, and the vibration displacement of the coupling system in Y direction is between 1.0 mm and 1.45 mm. Meanwhile, the influence law of axle rotating speed on the stability is obtained by comparing the bifurcation diagram and Floquet multiplier graph of the coupling system.

Originality/value

The numerical simulation data obtained in this study can provide a theoretical evidence for designing the running speed of railway freight wagon, utilizing or controlling the non-linear dynamic behaviours of the proposed coupling system, and ensuring the stability of railway freight wagons.

Details

Engineering Computations, vol. 40 no. 1
Type: Research Article
ISSN: 0264-4401

Keywords

Article
Publication date: 10 August 2010

Wang Junguo, Zhou Jianzhong and Peng Bing

The purpose of this paper is to improve forecasting accuracy for short‐term load series.

Abstract

Purpose

The purpose of this paper is to improve forecasting accuracy for short‐term load series.

Design/methodology/approach

A forecasting method based on chaotic time series and optimal diagonal recurrent neural networks (DRNN) is presented. The input of the DRNN is determined by the embedding dimension of the reconstructed phase space, and adaptive dynamic back propagation (DBP) algorithm is used to train the network. The connection weights of the DRNN are optimized via modified genetic algorithms, and the best results of optimization are regarded as initial weights for the network. The new method is applied to predict the actual short‐term load according to its chaotic characteristics, and the forecasting results also validate the feasibility.

Findings

For the chaos time series, the hybrid neural genetic method based on phase space reconstruction can carry out the short‐term prediction with the higher accuracy.

Research limitations/implications

The proposed method is not suited to medium and long‐term load forecasting.

Practical implications

The accuracy of the load forecasting is important to the economic and secure operation of power systems; also, the neural genetic method can improve forecasting accuracy.

Originality/value

This paper will help overcome the defects of traditional neural network and make short‐term load forecasting more accurate and fast.

Details

Kybernetes, vol. 39 no. 8
Type: Research Article
ISSN: 0368-492X

Keywords

Article
Publication date: 16 October 2009

Junguo Wang, Jianzhong Zhou and Bing Peng

The purpose of this paper is to detect the periodic signal under strong noise background, and estimate its amplitude/phase.

1021

Abstract

Purpose

The purpose of this paper is to detect the periodic signal under strong noise background, and estimate its amplitude/phase.

Design/methodology/approach

Melnikov method is adopted as calculating the threshold value when chaos occurs, and the detected signal is taken as a system parameter. The system's output state is changed if the parameter has a slight change near the threshold. Meantime, the phase of system's output is recognized to judge whether the output state changes, and the signal parameter is estimated according to the necessary condition.

Findings

A small periodic signal in noise can be detected by Duffing oscillator via a transition from chaotic motion to periodic motion.

Research limitations/implications

The paper shows how to calculate the amplitude/phase in low signal‐to‐noise ratios.

Practical implications

The Duffing system is sensitive to the weak periodic signal and has definite immunity to noise, so it is easy to construct a system composed of many oscillators that could process complex signals, even though the environmental noise is intense.

Originality/value

This paper presents a nonlinear method for detecting and extracting the weak signal.

Details

Kybernetes, vol. 38 no. 10
Type: Research Article
ISSN: 0368-492X

Keywords

Article
Publication date: 13 October 2021

Zhifang Wang, Jianguo Yu, Shangjing Lin, Junguo Dong and Zheng Yu

The paper takes the air-ground integrated wireless ad hoc network-integrated system as the research object, this paper aims to propose a distributed robust H adaptive…

172

Abstract

Purpose

The paper takes the air-ground integrated wireless ad hoc network-integrated system as the research object, this paper aims to propose a distributed robust H adaptive fault-tolerant control algorithm suitable for the system to distribute to solve the problem of control and communication failure at the same time.

Design/methodology/approach

In the paper, the authors propose a distributed robust H adaptive fault-tolerant control algorithm suitable for the air-ground integrated wireless ad hoc network-integrated system.

Findings

The results show that the integrated system has good robustness and fault tolerance performance indicators for flight control and wireless signal transmission when confronted with external disturbances, internal actuator failures and wireless network associated failures and the flight control curve of the quadrotor unmanned aerial vehicle (UAV) is generally smooth and stable, even if it encounters external disturbances and actuator failures, its fault tolerance performance is very good. Then in the range of 400–800 m wireless communication distance, the success rate of wireless signal loop transmission is stable at 80%–100% and the performance is at least relatively improved by 158.823%.

Originality/value

This paper takes the air-ground integrated wireless ad hoc network-integrated system as the research object, based on the robust fault-tolerant control algorithm, the authors propose a distributed robust H adaptive fault-tolerant control algorithm suitable for the system and through the Riccati equation and linear matrix inequation method, the designed distributed robust H adaptive fault-tolerant controller further optimizes the fault suppression factor γ, so as to break through the limitation of only one Lyapunov matrix for different fault modes to distribute to solve the problem of control and communication failure at the same time.

Article
Publication date: 5 October 2018

Jun Guo, Jingcheng Zhong, Yibing Li, Baigang Du and Shunsheng Guo

To improve the efficiency of end-of-life product’s disassembly process, this paper aims to propose a disassembly sequence planning (DSP) method to reduce additional efforts of…

Abstract

Purpose

To improve the efficiency of end-of-life product’s disassembly process, this paper aims to propose a disassembly sequence planning (DSP) method to reduce additional efforts of removing parts when considering the changes of disassembly directions and tools.

Design/methodology/approach

The methodology has three parts. First, a disassembly hybrid graph model (DHGM) was adopted to represent disassembly operations and their precedence relations. After representing the problem as DHGM, a new integer programming model was suggested for the objective of minimizing the total disassembly time. The objective takes into account several criteria such as disassembly tools change and the change of disassembly directions. Finally, a novel hybrid approach with a chaotic mapping-based hybrid algorithm of artificial fish swarm algorithm (AFSA) and genetic algorithm (GA) was developed to find an optimal or near-optimal disassembly sequence.

Findings

Numerical experiment with case study on end-of-life product disassembly planning has been carried out to demonstrate the effectiveness of the designed criteria and the results exhibited that the developed algorithm performs better than other relevant algorithms.

Research limitations/implications

More complex case studies for DSP problems will be introduced. The performance of the CAAFG algorithm can be enhanced by improving the design of AFSA and GA by combining them with other search techniques.

Practical implications

DSP of an internal gear hydraulic pump is analyzed to investigate the accuracy and efficiency of the proposed method.

Originality/value

This paper proposes a novel CAAFG algorithm for solving DSP problems. The implemented tool generates a feasible optimal solution and the considered criteria can help the planer obtain satisfactory results.

Details

Assembly Automation, vol. 39 no. 1
Type: Research Article
ISSN: 0144-5154

Keywords

Article
Publication date: 15 July 2021

Kathiresh Mayilsamy, Maideen Abdhulkader Jeylani A,, Mahaboob Subahani Akbarali and Haripranesh Sathiyanarayanan

The purpose of this paper is to develop a hybrid algorithm, which is a blend of auto-regressive integral moving average (ARIMA) and multilayer perceptron (MLP) for addressing the…

Abstract

Purpose

The purpose of this paper is to develop a hybrid algorithm, which is a blend of auto-regressive integral moving average (ARIMA) and multilayer perceptron (MLP) for addressing the non-linearity of the load time series.

Design/methodology/approach

Short-term load forecasting is a complex process as the nature of the load-time series data is highly nonlinear. So, only ARIMA-based load forecasting will not provide accurate results. Hence, ARIMA is combined with MLP, a deep learning approach that models the resultant data from ARIMA and processes them further for Modelling the non-linearity.

Findings

The proposed hybrid approach detects the residuals of the ARIMA, a linear statistical technique and models these residuals with MLP neural network. As the non-linearity of the load time series is approximated in this error modeling process, the proposed approach produces accurate forecasting results of the hourly loads.

Originality/value

The effectiveness of the proposed approach is tested in the laboratory with the real load data of a metropolitan city from South India. The performance of the proposed hybrid approach is compared with the conventional methods based on the metrics such as mean absolute percentage error and root mean square error. The comparative results show that the proposed prediction strategy outperforms the other hybrid methods in terms of accuracy.

Details

COMPEL - The international journal for computation and mathematics in electrical and electronic engineering , vol. 40 no. 3
Type: Research Article
ISSN: 0332-1649

Keywords

Article
Publication date: 10 August 2012

Juozas Padgurskas, Igoris Prosyčevas, Raimundas Rukuiža, Raimondas Kreivaitis and Artūras Kupčinskas

The purpose of this paper is to investigate the possibility of using the iron nanoparticles and iron nanoparticles coated with copper layer as additives to base oils.

Abstract

Purpose

The purpose of this paper is to investigate the possibility of using the iron nanoparticles and iron nanoparticles coated with copper layer as additives to base oils.

Design/methodology/approach

Fe and Fe+Cu nanoparticles were synthesized by a reduction modification method and added to mineral oil. The size and structure of prepared nanoparticles were characterized by SEM, TEM, XRF, AAS and XRD analysis. Tribological properties of modified lubricants were evaluated on a four‐ball machine in a model of sliding friction pairs.

Findings

Spectral and microscopy analysis evidently displayed the formation of Fe and Fe+Cu nanoparticles in suspensions of colloidal solutions and oil. The size of formed nanoparticles was in 15‐50 nm range. Tribological experiments show good lubricating properties of oils modified with Fe and Fe+Cu nanoparticles: higher wear resistance (55 per cent and 46 per cent accordingly) and lower friction coefficient (30 per cent and 26 per cent accordingly). The tests show that nanoparticles provide decreasing tendency of friction torque during the operation of friction pair.

Originality/value

The paper demonstrates that iron nanoparticles and iron nanoparticles coated with copper layer, not only reduce the wear and friction decrease of friction pairs, but possibly also can create layer in oil which separates two friction surfaces and have some self‐organisation properties.

Details

Industrial Lubrication and Tribology, vol. 64 no. 5
Type: Research Article
ISSN: 0036-8792

Keywords

1 – 8 of 8