Search results

1 – 10 of over 6000
Article
Publication date: 6 August 2018

Fenyi Dong, Bing Qi and Yuyang Jie

The purpose of this paper is to cluster and analyse the level of agricultural science and technology in China’s provinces by using grey clustering model, to have an overall…

Abstract

Purpose

The purpose of this paper is to cluster and analyse the level of agricultural science and technology in China’s provinces by using grey clustering model, to have an overall understanding of the current situation of agricultural science and technology development in these provinces, and to offer a reference for decision-making departments to draw up agricultural science and technology development plans.

Design/methodology/approach

First of all, the grey clustering assessment is used to evaluate the clustering of agricultural science and technology level in China’s provinces in 2011, 2013 and 2015. Also a comparative static analysis is made. Then, based on the prediction data of GM (1,1) model, the provincial agricultural science and technology levels in 2017 and 2019 are analysed by grey clustering. Finally, some suggestions are put forward, such as adjusting the allocation of agricultural science and technology resources and providing policy preferences to backward areas, so as to promote the coordinated development of agricultural science and technology in China.

Findings

The development of agricultural science and technology in various provinces and regions of the authors’ country is unbalanced, with a big gap of agricultural and technology level between different provinces. What’s more, the level of agricultural science and technology in remote areas has been developing slowly, but it has been lagging behind. Through the grey clustering analysis of the provincial agricultural science and technology level in 2017 and 2019, it is concluded that the level of agricultural science and technology will be promoted as a whole, but the gap of agricultural science and technology level between different provinces and cities will be enlarged.

Research limitations/implications

This paper comprehensively studies the current situation and future development trends of agricultural science and technology in China’s provinces in recent years, and preliminarily analyses the reasons for the transformation of agricultural science and technology level, however, with no further inspection. Related research should be made for further study.

Practical implications

This paper will provide overall understanding of the current situation of agricultural science and technology development in China’s provinces and cities, and put forward relevant suggestions for the future development of agricultural science and technology in China’s provinces and cities, and provide references for decision-making departments to draw up agricultural science and technology development plans.

Originality/value

For the first time, the grey clustering method is used to the research of agricultural science and technology level in the province. It analyses and evaluates the past and present situation and predicts the future development trend of provincial agricultural science and technology level by the grey clustering analysis method, which is a complete research.

Details

Grey Systems: Theory and Application, vol. 8 no. 4
Type: Research Article
ISSN: 2043-9377

Keywords

Article
Publication date: 16 July 2019

Yong Liu, Jun-liang Du, Ren-Shi Zhang and Jeffrey Yi-Lin Forrest

This paper aims to establish a novel three-way decisions-based grey incidence analysis clustering approach and exploit it to extract information and rules implied in panel data.

Abstract

Purpose

This paper aims to establish a novel three-way decisions-based grey incidence analysis clustering approach and exploit it to extract information and rules implied in panel data.

Design/methodology/approach

Because of taking on the spatiotemporal characteristics, panel data can well-describe and depict the systematic and dynamic of the decision objects. However, it is difficult for traditional panel data analysis methods to efficiently extract information and rules implied in panel data. To effectively deal with panel data clustering problem, according to the spatiotemporal characteristics of panel data, from the three dimensions of absolute amount level, increasing amount level and volatility level, the authors define the conception of the comprehensive distance between decision objects, and then construct a novel grey incidence analysis clustering approach for panel data and study its computing mechanism of threshold value by exploiting the thought and method of three-way decisions; finally, the authors take a case of the clustering problems on the regional high-tech industrialization in China to illustrate the validity and rationality of the proposed model.

Findings

The results show that the proposed model can objectively determine the threshold value of clustering and achieve the extraction of information and rules inherent in the data panel.

Practical implications

The novel model proposed in the paper can well-describe and resolve panel data clustering problem and efficiently extract information and rules implied in panel data.

Originality/value

The proposed model can deal with panel data clustering problem and realize the extraction of information and rules inherent in the data panel.

Details

Kybernetes, vol. 48 no. 9
Type: Research Article
ISSN: 0368-492X

Keywords

Article
Publication date: 2 November 2015

Yeqing Guan, Hua Liu and Ying Zhu

The purpose of this paper is to find the reason which the results of grey variable weight clustering method do not correspond with the reality. It proposes reconstructing the…

Abstract

Purpose

The purpose of this paper is to find the reason which the results of grey variable weight clustering method do not correspond with the reality. It proposes reconstructing the whitenization weight function, outlining why and how inconsistency is avoided. The study aims to improve the model of grey clustering method based on the whitenization weight function and list the steps of the new clustering model so that analysis and application of innovation capacity in a broader range is normally found.

Design/methodology/approach

First the reason for the problem that the clustering results of grey variable weight clustering do not correspond with the reality is analyzed in two existing literature. And then a new whitenization weight function is reconstructed, two properties of the whitenization weight function are proved. The solution of the new grey variable weight clustering based on the whitenization weight function is built by following six steps.

Findings

The paper provides a new whitenization weight function which satisfies the normative and non-triplecrossing. It suggests that successful clustering results of innovation capacity act on two levels: integrating the elements of innovation capacity indexes, and following steps of grey variable weight clustering.

Originality/value

This paper improves the existing method of grey variable weight clustering and fulfills an identified need to study how cities’ innovation capacity can be clustered.

Details

Grey Systems: Theory and Application, vol. 5 no. 3
Type: Research Article
ISSN: 2043-9377

Keywords

Article
Publication date: 6 November 2019

Dang Luo and Zhang Huihui

The purpose of this paper is to propose a grey clustering model based on kernel and information field to deal with the situation in which both the observation values and the…

Abstract

Purpose

The purpose of this paper is to propose a grey clustering model based on kernel and information field to deal with the situation in which both the observation values and the turning points of the whitenization weight function are interval grey numbers.

Design/methodology/approach

First, the “unreduced axiom of degree of greyness” was expanded to obtain the inference of “information field not-reducing”. Then, based on the theoretical basis of inference, the expression of whitenization weight function with interval grey number was provided. The grey clustering model and fuzzy clustering model were compared to analyse the relationship and difference between the two models. Finally, the paper model and the fuzzy clustering model were applied to the example analysis, and the interval grey number clustering model was established to analyse the influencing factors of regional drought disaster risk in Henan Province.

Findings

The example analysis results illustrate that although the two clustering methods have different theoretical basis, they are suitable for dealing with complex systems with uncertainty or grey characteristic, solving the problem of incomplete system information, which has certain feasibility and rationality. The clustering results of case study show that five influencing factors of regional drought disaster risk in Henan Province are divided into three classes, consistent with the actual situation, and they show the validity and practicability of the clustering model.

Originality/value

The paper proposes a new whitenization weight function with interval grey number that can transform interval grey number operations into real number operations. It not only simplifies the calculation steps, but it has a great significance for the “small data sets and poor information” grey system and has a universal applicability.

Details

Grey Systems: Theory and Application, vol. 10 no. 1
Type: Research Article
ISSN: 2043-9377

Keywords

Article
Publication date: 15 September 2023

Tooraj Karimi and Mohamad Ahmadian

Competition in the banking sector is more complex than in the past, and survival has become more difficult than before. The purpose of this paper is to propose a grey methodology…

Abstract

Purpose

Competition in the banking sector is more complex than in the past, and survival has become more difficult than before. The purpose of this paper is to propose a grey methodology for evaluating, clustering and ranking the performance of bank branches with imprecise and uncertain data in order to determine the relative status of each branch.

Design/methodology/approach

In this study, the two-stage data envelopment analysis model with grey data is applied to assess the efficiency of bank branches in terms of operations. The result of grey two-stage data envelopment analysis model is a grey number as efficiency value of each branch. In the following, the branches are classified into three grey categories of performance by grey clustering method, and the complete grey ranking of branches are performed using “minimax regret-based approach” and “whitening value rating”.

Findings

The results show that after grey clustering of 22 branches based on grey efficiency value obtained from the grey two-stage DEA model, 6 branches are assigned to “excellent” class, 4 branches to “good” class and 12 branches to “poor” class. Moreover, the results of MRA and whitening value rating models are integrated, and a complete ranking of 22 branches are presented.

Practical implications

Grey clustering of branches based on grey efficiency value can facilitate planning and policy-making for branches so that there is no need to plan separately for each branch. The grey ranking helps the branches find their current position compared to other branches, and the results can be a dashboard to find the best practices for benchmarking.

Originality/value

Compared with traditional DEA methods which use deterministic data and consider decision-making units as black boxes, in this research, a grey two-stage DEA model is proposed to evaluate the efficiency of bank branches. Furthermore, grey clustering and grey ranking of efficiency values are used as a novel solution for improving the accuracy of grey two-stage DEA results.

Details

Grey Systems: Theory and Application, vol. 14 no. 1
Type: Research Article
ISSN: 2043-9377

Keywords

Article
Publication date: 15 June 2023

Yaru Huang, Yaojun Ye and Mengling Zhou

This paper aims to build an improved grey panel clustering evaluation model and evaluate the comprehensive development potential of industrial economy, society and ecological…

Abstract

Purpose

This paper aims to build an improved grey panel clustering evaluation model and evaluate the comprehensive development potential of industrial economy, society and ecological environment in the Yangtze River Economic Belt of China. The purpose of this study is to provide some theoretical basis and tool support for management departments and relevant researchers engaged in industrial sustainable development.

Design/methodology/approach

This study uses the driving force pressure state impact response analysis framework to build a comprehensive evaluation index system. Based on the center point triangle whitening weight function, it classifies the panel grey clustering of improvement time and index weight.

Findings

The results show that there are great differences in the level of industrial ecological development in different regions of the Yangtze River Economic Belt, which further illustrates the scientificity and rationality of the evaluation method proposed in this paper.

Practical implications

Due to the industrial ecological development is in a constantly changing state, and the information is uncertain. Whitening weight function is introduced to represent the complete information of relevant data. The industrial ecological evaluation involves a comprehensive complex system, which belongs to the panel data analysis problem. The improved grey panel clustering evaluation model is applied to grade the industrial ecological development level of the Yangtze River Economic Belt. The results have important guiding significance for the balanced development of industrial ecology in the region.

Social implications

Due to the industrial ecological development is in a constantly changing state, and the information is uncertain. Whitening weight function is introduced to represent the complete information of relevant data. The industrial ecological evaluation involves a comprehensive complex system, which belongs to the panel data analysis problem. In order to improve the effectiveness of industrial ecological evaluation, the improved grey panel clustering evaluation model is applied to grade the industrial ecological development level of the Yangtze River Economic Belt. The results have important guiding significance for the balanced development of industrial ecology in the region.

Originality/value

the new model proposed in this paper complements and improves the grey clustering analysis theory of panel data, that is, aiming at the subjective limitation of using time degree to determine time weight in panel grey clustering, a comprehensive theoretical method for determining time weight is creatively proposed. Combining the DPSIR (Driving force-Pressure-State-Influence-Response) model model with ecological development, a comprehensive evaluation model is constructed to make the evaluation results more authentic and comprehensive.

Details

Grey Systems: Theory and Application, vol. 13 no. 3
Type: Research Article
ISSN: 2043-9377

Keywords

Article
Publication date: 26 November 2019

Dang Luo, Manman Zhang and Huihui Zhang

The purpose of this paper is to establish a two-stage grey cloud clustering model to assess the drought risk level of 18 prefecture-level cities in Henan Province.

Abstract

Purpose

The purpose of this paper is to establish a two-stage grey cloud clustering model to assess the drought risk level of 18 prefecture-level cities in Henan Province.

Design/methodology/approach

The clustering process is divided into two stages. In the first stage, grey cloud clustering coefficient vectors are obtained by grey cloud clustering. In the second stage, with the help of the weight kernel clustering function, the general representation of the weight vector group of kernel clustering is given. And a new coefficient vector of kernel clustering that integrates the support factors of the adjacent components was obtained in this stage. The entropy resolution coefficient of grey cloud clustering coefficient vector is set as the demarcation line of the two stages, and a two-stage grey cloud clustering model, which combines grey and randomness, is proposed.

Findings

This paper demonstrates that 18 cities in Henan Province are divided into five categories, which are in accordance with five drought hazard levels. And the rationality and validity of this model is illustrated by comparing with other methods.

Practical implications

This paper provides a practical and effective new method for drought risk assessment and, then, provides theoretical support for the government and production departments to master drought information and formulate disaster prevention and mitigation measures.

Originality/value

The model in this paper not only solves the problem that the result and the rule of individual subjective judgment are always inconsistent owing to not fully considering the randomness of the possibility function, but also solves the problem that it’s difficult to ascertain the attribution of decision objects, when several components of grey clustering coefficient vector tend to be balanced. It provides a new idea for the development of the grey clustering model. The rationality and validity of the model are illustrated by taking 18 cities in Henan Province as examples.

Details

Grey Systems: Theory and Application, vol. 10 no. 1
Type: Research Article
ISSN: 2043-9377

Keywords

Article
Publication date: 26 May 2022

Md Kamal Hossain, Vikas Thakur and Yigit Kazancoglu

The study aims to identify and analyse the drivers of resilient healthcare supply chain (HCSC) preparedness in emergency health outbreaks to prevent disruption in healthcare…

Abstract

Purpose

The study aims to identify and analyse the drivers of resilient healthcare supply chain (HCSC) preparedness in emergency health outbreaks to prevent disruption in healthcare services delivery in the context of India.

Design/methodology/approach

The present study has opted for the grey clustering method to identify and analyse the drivers of resilient HCSC preparedness during health outbreaks into high, moderate and low important grey classes based on Grey-Delphi, analytic hierarchy process (AHP) and Shannon's information entropy (IE) theory.

Findings

The drivers of the resilient HCSC are scrutinised using the Grey-Delphi technique. By implementing AHP and Shannon's IE theory and depending upon structure, process and outcome measures of HCSC, eleven drivers of a resilient HCSC preparedness are clustered as highly important, three drivers into moderately important, and two drivers into a low important group.

Originality/value

The analysis and insights developed in the present study would help to plan and execute a viable, resilient emergency HCSC preparedness during the emergence of any health outbreak along with the stakeholders' coordination. The results of the study offer information, rationality, constructiveness, and universality that enable the wider application of AHP-IE/Grey clustering analysis to HCSC resilience in the wake of pandemics.

Details

International Journal of Emerging Markets, vol. 18 no. 6
Type: Research Article
ISSN: 1746-8809

Keywords

Article
Publication date: 6 October 2023

Jie Yang, Manman Zhang, Linjian Shangguan and Jinfa Shi

The possibility function-based grey clustering model has evolved into a complete approach for dealing with uncertainty evaluation problems. Existing models still have problems…

Abstract

Purpose

The possibility function-based grey clustering model has evolved into a complete approach for dealing with uncertainty evaluation problems. Existing models still have problems with the choice dilemma of the maximum criteria and instances when the possibility function may not accurately capture the data's randomness. This study aims to propose a multi-stage skewed grey cloud clustering model that blends grey and randomness to overcome these problems.

Design/methodology/approach

First, the skewed grey cloud possibility (SGCP) function is defined, and its digital characteristics demonstrate that a normal cloud is a particular instance of a skewed cloud. Second, the border of the decision paradox of the maximum criterion is established. Third, using the skewed grey cloud kernel weight (SGCKW) transformation as a tool, the multi-stage skewed grey cloud clustering coefficient (SGCCC) vector is calculated and research items are clustered according to this multi-stage SGCCC vector with overall features. Finally, the multi-stage skewed grey cloud clustering model's solution steps are then provided.

Findings

The results of applying the model to the assessment of college students' capacity for innovation and entrepreneurship revealed that, in comparison to the traditional grey clustering model and the two-stage grey cloud clustering evaluation model, the proposed model's clustering results have higher identification and stability, which partially resolves the decision paradox of the maximum criterion.

Originality/value

Compared with current models, the proposed model in this study can dynamically depict the clustering process through multi-stage clustering, ensuring the stability and integrity of the clustering results and advancing grey system theory.

Details

Grey Systems: Theory and Application, vol. 14 no. 1
Type: Research Article
ISSN: 2043-9377

Keywords

Article
Publication date: 17 November 2022

Tamanna Islam Meem, Md. Mehrab Hossain and Jhumana Akter

In comparison to other industries, the construction industry is one of the most dangerous industries. Behavior-based safety (BBS) is a common and useful technique for risk…

Abstract

Purpose

In comparison to other industries, the construction industry is one of the most dangerous industries. Behavior-based safety (BBS) is a common and useful technique for risk indicator processing. Almost all studies are based on the BBS checklist, but very few of them focus on the increasing dangers faced by construction workers and the important factors that lead to accidents. This research represents a risk spatiotemporal analysis and visual tracking approach based on BBS and Building Information Modeling (BIM).

Design/methodology/approach

After the literature review, a BBS checklist was developed. Then a survey was conducted based on the BBS checklist and the temporal evolution of risks has been completed. After that, managing the risk with the automatic rule checking (ARC) system using BIM was conducted simultaneously to develop a framework by conducting a case study.

Findings

Based on the grey clustering analysis, this work provides a temporal evolution analysis approach for dynamic analyzing BBS risk. According to the grey relational analysis (GRA) data, the main key factor of risk was the missing guardrail/handrail system. After that, a case study was performed and the system automatically warn in the preconstruction phase that the barrier is missing as the system benefits.

Originality/value

A systematic framework has been provided for risk analysis through which high health and safety performance outcomes can be achieved on construction projects. This study will assist design engineers in addressing the potential danger to employees during the preconstruction stage and monitoring dynamic changes in risk on any construction site.

Details

International Journal of Building Pathology and Adaptation, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 2398-4708

Keywords

1 – 10 of over 6000