Search results

1 – 10 of 551
Article
Publication date: 25 April 2024

Metin Uzun

This research study aims to minimize autonomous flight cost and maximize autonomous flight performance of a slung load carrying rotary wing mini unmanned aerial vehicle (i.e. UAV…

Abstract

Purpose

This research study aims to minimize autonomous flight cost and maximize autonomous flight performance of a slung load carrying rotary wing mini unmanned aerial vehicle (i.e. UAV) by stochastically optimizing autonomous flight control system (AFCS) parameters. For minimizing autonomous flight cost and maximizing autonomous flight performance, a stochastic design approach is benefitted over certain parameters (i.e. gains of longitudinal PID controller of a hierarchical autopilot system) meanwhile lower and upper constraints exist on these design parameters.

Design/methodology/approach

A rotary wing mini UAV is produced in drone Laboratory of Iskenderun Technical University. This rotary wing UAV has three blades main rotor, fuselage, landing gear and tail rotor. It is also able to carry slung loads. AFCS variables (i.e. gains of longitudinal PID controller of hierarchical autopilot system) are stochastically optimized to minimize autonomous flight cost capturing rise time, settling time and overshoot during longitudinal flight and to maximize autonomous flight performance. Found outcomes are applied during composing rotary wing mini UAV autonomous flight simulations.

Findings

By using stochastic optimization of AFCS for rotary wing mini UAVs carrying slung loads over previously mentioned gains longitudinal PID controller when there are lower and upper constraints on these variables, a high autonomous performance having rotary wing mini UAV is obtained.

Research limitations/implications

Approval of Directorate General of Civil Aviation in Republic of Türkiye is essential for real-time rotary wing mini UAV autonomous flights.

Practical implications

Stochastic optimization of AFCS for rotary wing mini UAVs carrying slung loads is properly valuable for recovering autonomous flight performance cost of any rotary wing mini UAV.

Originality/value

Establishing a novel procedure for improving autonomous flight performance cost of a rotary wing mini UAV carrying slung loads and introducing a new process performing stochastic optimization of AFCS for rotary wing mini UAVs carrying slung loads meanwhile there exists upper and lower bounds on design variables.

Details

Aircraft Engineering and Aerospace Technology, vol. 96 no. 4
Type: Research Article
ISSN: 1748-8842

Keywords

Article
Publication date: 3 October 2016

Turgul Oktay, Mehmet Konar, Murat Onay, Murat Aydin and Mohamed Abdallah Mohamed

The purpose of this paper is to increase flight performance of small unmanned aerial vehicle (UAV) using simultaneous UAV and autopilot system design.

Abstract

Purpose

The purpose of this paper is to increase flight performance of small unmanned aerial vehicle (UAV) using simultaneous UAV and autopilot system design.

Design/methodology/approach

A small UAV is manufactured in Erciyes University, College of Aviation, Model Aircraft Laboratory. Its wing and tail is able to move forward and backward in the nose-to-tail direction in prescribed interval. Autopilot parameters and assembly position of wing and tail to fuselage are simultaneously designed to maximize flight performance using a stochastic optimization method. Results are obtained are used for simulations.

Findings

Using simultaneous UAV and autopilot system design idea, flight performance is maximized.

Research limitations/implications

Permission of Directorate General of Civil Aviation in Turkey is required for testing UAVs in long range.

Practical implications

Simultaneous design idea is very beneficial for improving UAV flight performance.

Originality/value

Creating a novel method to improve flight performance of UAV and developing an algorithm performing simultaneous design idea.

Details

Aircraft Engineering and Aerospace Technology, vol. 88 no. 6
Type: Research Article
ISSN: 1748-8842

Keywords

Article
Publication date: 16 April 2020

Sezer Çoban

This paper aims to investigate the autonomous performance optimization of a research-based hybrid unmanned aerial vehicle (i.e. HUAV) manufactured at Iskenderun Technical…

Abstract

Purpose

This paper aims to investigate the autonomous performance optimization of a research-based hybrid unmanned aerial vehicle (i.e. HUAV) manufactured at Iskenderun Technical University.

Design/methodology/approach

To maximize the autonomous performance of this HUAV, longitudinal and lateral dynamics were initially obtained. Then, the optimum magnitudes of the autopilot system parameters were estimated by considering the vehicle’s dynamic model and autopilot parameters.

Findings

After determining the optimum values of the longitudinal and lateral autopilots, an improved design for the autonomously controlled (AC) HUAV was achieved in terms of real-time flight.

Practical implications

Simultaneous improvement of the longitudinal and lateral can be used for better HUAV operations.

Originality/value

In this paper, the autopilot systems (i.e. longitudinal and lateral) of an HUAV are for the first time simultaneously designed in the literature. This helps the simultaneous improvement of the longitudinal and lateral flight trajectory tracking performances.

Details

Aircraft Engineering and Aerospace Technology, vol. 92 no. 4
Type: Research Article
ISSN: 1748-8842

Keywords

Article
Publication date: 25 September 2009

H. Murat Afsar, Marie‐Laure Espinouse and Bernard Penz

The purpose of this paper is to provide some heuristic and meta heuristic tools to aid airline companies in flight planning while taking into account maintenance planning. The…

Abstract

Purpose

The purpose of this paper is to provide some heuristic and meta heuristic tools to aid airline companies in flight planning while taking into account maintenance planning. The objective is to maximize aircraft utilization before the maintenance interventions and to smooth the long‐term flight load of the aircraft so that maintenance checks are regular for all the fleet.

Design/methodology/approach

The proposed methods, based on operational research solution technics, build a flight planning for an airline company. The simulation of the proposed methods is observed over 40 weeks and evaluated with different problem instances and maintenance policies.

Findings

The longest path based method with increasing priority and the simulated annealing are shown to have the best aircraft utilization results.

Research limitations/implications

Further research could propose some methods which build simultaneous maintenance and flight planning.

Practical implications

The economic value and legal considerations of maintenance activities in the airline industry show the importance of maximizing aircraft utilization. The proposed methods are compared to decide the best maintenance policy. These methods are simple and efficient.

Originality/value

This paper provides a connection between an industrial problem of aircraft maximization under maintenance constraints and operational research. Simple but efficient methods are evaluated in terms of two criteria: aircraft maximization and flight load smoothing.

Details

Journal of Quality in Maintenance Engineering, vol. 15 no. 4
Type: Research Article
ISSN: 1355-2511

Keywords

Abstract

Details

Responsible Investment Around the World: Finance after the Great Reset
Type: Book
ISBN: 978-1-80382-851-0

Article
Publication date: 22 June 2023

Simon Bagy, Michel Libsig, Bastien Martinez and Baptiste Masse

This paper aims to describe the use of optimization approaches to increase the range of near-future howitzer ammunition.

Abstract

Purpose

This paper aims to describe the use of optimization approaches to increase the range of near-future howitzer ammunition.

Design/methodology/approach

The performance of a gliding projectile concept is assessed using an aeroballistic workflow, comprising aerodynamic characterization and flight trajectory computation. First, a single-objective optimization is run with genetic algorithms to find the maximal attainable range for this type of projectile. Then, a multi-objective formulation of the problem is proposed to consider the compromise between range and time of flight. Finally, the aerodynamic model used for the gliding ammunition is evaluated, in comparison with direct computational fluid dynamics (CFD) computations.

Findings

Applying single-objective range maximization results in a great improvement of the reachable distance of the projectile, at the expense of the flight duration. Therefore, a multi-objective optimization is implemented in a second time, to search sets of parameters resulting in an optimal compromise between fire range and flight time. The resulting Pareto front can be directly interpreted and has the advantage of being useful for tactical decisions.

Research limitations/implications

The main limitation of the work concerns the aerodynamic model of the gliding ammunition, which was initially proposed as an alternative to reduce significantly the computational cost of aerodynamic characterization and enable optimizations. When compared with direct CFD computations, this method appears to induce an overestimation of the range. This suggests future evolution to improve the accuracy of this approach.

Originality/value

To the best of the authors’ knowledge, this paper presents an original ammunition concept for howitzers, aiming at extending the range of fire by using lifting surfaces and guidance. In addition, optimization techniques are used to improve the range of such projectile configuration.

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 0961-5539

Keywords

Article
Publication date: 5 January 2015

Giovanni Droandi and Giuseppe Gibertini

The purpose of this paper is to present the aerodynamic blade design of a tiltwing aircraft with a multi-objective optimization procedure. The aerodynamic design of tiltrotor…

Abstract

Purpose

The purpose of this paper is to present the aerodynamic blade design of a tiltwing aircraft with a multi-objective optimization procedure. The aerodynamic design of tiltrotor blades is a very challenging task in the project of this type of aircraft.

Design/methodology/approach

Tiltrotor blades have to give good performance both in helicopter and aeroplane modes. According to the design parameters (the chords, the twists and the airfoils along the blade), as the optimization objectives are different from one operating condition to another, the blade is the result of a multi-objective constrained optimization based on a controlled elitist genetic algorithm founded on the NSGA-II algorithm. The optimization process uses a BEMT solver to compute rotor performance. To avoid negative effects due to compressibility losses in aeroplane mode, the blade shape has been refined following the normal Mach number criterion.

Findings

It has been found that the optimized rotor blade gives good performance both in terms of figure of merit and propulsive efficiency if compared with experimental data of existing rotor (ERICA tiltrotor) and propeller (NACA high-speed propeller).

Practical implications

The optimization procedure described in this paper for the design of tiltrotor blades can be efficiently used for the aerodynamic design of helicopter rotors and aircraft propellers of all typology.

Originality/value

In this work, advanced methodologies have been used for the aerodynamics design of a proprotor optimized for an aircraft which belongs to the innovative typology of high-performance tiltwing tiltrotor aircraft.

Details

Aircraft Engineering and Aerospace Technology: An International Journal, vol. 87 no. 1
Type: Research Article
ISSN: 0002-2667

Keywords

Open Access
Article
Publication date: 13 April 2023

James Peoples, Muhammad Asraf Abdullah and NurulHuda Mohd Satar

Health risks associated with coronavirus disease 2019 (COVID-19) have severely affected the financial stability of airline companies globally. Recapturing financial stability…

33510

Abstract

Health risks associated with coronavirus disease 2019 (COVID-19) have severely affected the financial stability of airline companies globally. Recapturing financial stability following this crisis depends heavily on these companies’ ability to attain efficient and productive operations. This study uses several empirical approaches to examine key factors contributing to carriers sustaining high productivity prior to, during and after a major recession. Findings suggest, regardless of economic conditions, that social distancing which requires airline companies in the Asia Pacific region to fly with a significant percentage of unfilled seats weakens the performance of those companies. Furthermore, efficient operations do not guarantee the avoidance of productivity declines, especially during a recession.

Details

Emerald Open Research, vol. 1 no. 4
Type: Research Article
ISSN: 2631-3952

Keywords

Article
Publication date: 30 July 2019

Sezer Çoban

The purpose of this paper is to rise the autonomous flight performance of the small unmanned aerial vehicle (UAV) using simultaneous tailplane of UAV and autopilot system design.

Abstract

Purpose

The purpose of this paper is to rise the autonomous flight performance of the small unmanned aerial vehicle (UAV) using simultaneous tailplane of UAV and autopilot system design.

Design/methodology/approach

A small UAV is remanufactured in the UAV laboratory. Its tailplane can be changed before the flight. Autopilot parameters and some parameters of tailplane are instantaneously designed to maximize autonomous flight performance using a stochastic optimization method. Results found are applied for simulations.

Findings

Benefitting simultaneous tailplane of UAV and autopilot system design process, autonomous flight performance is maximized.

Research limitations/implications

Authorization of Directorate General of Civil Aviation in Turkey is required for UAV flights.

Practical implications

Simultaneous tailplane and autopilot system design process is so useful for refining UAV autonomous flight performance.

Social implications

Simultaneous tailplane and autopilot system design process fulfills confidence, high autonomous performance, and easy service demands of UAV users. By that way, UAV users will be able to use better UAVs.

Originality/value

Creating a novel technique to recover autonomous flight performance (e.g. less overshoot, less settling time and less rise time during trajectory tracking) of UAV and developing a novel procedure performing simultaneous tailplane of UAV and autopilot system design idea.

Details

Aircraft Engineering and Aerospace Technology, vol. 91 no. 10
Type: Research Article
ISSN: 1748-8842

Keywords

Article
Publication date: 22 November 2011

Giordano Tomassetti, Salvatore Ameduri and Antonio Carozza

The purpose of this paper is to focus on a morphing architecture, conceived to produce droop nose effect, thus preserving high lift performance and laminar flow.

Abstract

Purpose

The purpose of this paper is to focus on a morphing architecture, conceived to produce droop nose effect, thus preserving high lift performance and laminar flow.

Design/methodology/approach

A numerical approach was adopted. On the base of preliminary aerodynamic requirements, the main aspects of the actuation architecture were defined and then assessed through a genetic approach.

Findings

Two different working modalities of mentioned architecture were identified: the former implying the use of an actuator, the latter taking advantage of a tailored elastic element, able to actuate morphing under the action of aerodynamic loads, without the aid of actuators.

Research limitations/implications

The research presented in this work refers to an optimisation process currently tailored on preliminary aerodynamic requirements (leading edge vertical displacement maximisation, leading edge radius increase).

Originality/value

The research shows the possibility of producing morphing on the leading edge zone, actuating droop nose effect on metallic (constant and pice wise thickness) and composite skins.

Details

International Journal of Structural Integrity, vol. 2 no. 4
Type: Research Article
ISSN: 1757-9864

Keywords

1 – 10 of 551