Search results

1 – 10 of 192
Article
Publication date: 22 May 2020

Wei Sun, Shuai Yang, Junnan Gao and Xianfei Yan

It is very important to create a useful cyclic symmetric model for the investigation of the vibration reduction effect of hard-coating blisk. This study aims to develop a cyclic

96

Abstract

Purpose

It is very important to create a useful cyclic symmetric model for the investigation of the vibration reduction effect of hard-coating blisk. This study aims to develop a cyclic symmetry algorithm which can determine the mode of blisk in the sector coordinate system directly.

Design/methodology/approach

Using the exponential and real quasi-equivalent Fourier matrices, the formulas for solving the sector mode were derived, and the relationship between the two kinds of sector modes was also discussed. Based on the proposed cyclic symmetry algorithm, the vibration characteristics of an academic blisk were solved, and the formulas for solving the natural characteristics and vibration responses of the coated blisk were given.

Findings

A blisk with NiCrAlCoY+YSZ hard coating on both sides of each blade was chosen as a case to demonstrate the presented method. Based on the verification analysis model, the influences of coating thickness on the vibration reduction effect of the blisk were discussed. The results show that the hard coating has good vibration reduction effect on the blisk even the coating thickness is very thin and the vibration reduction effect of hard coating in the high frequency range is obviously better than that in the low frequency range.

Originality/value

As a large number of reduced order modeling methods of blisk are implemented based on the sector modes, the proposed method which can obtain the sector modes directly will significantly improve the efficiency of dynamic modeling and analysis of the coated blisk structure.

Details

Engineering Computations, vol. 37 no. 9
Type: Research Article
ISSN: 0264-4401

Keywords

Article
Publication date: 1 March 1993

P. BALASUBRAMANIAN, J.G. JAGADEESH, H.K. SUHAS and V. RAMAMURTI

The free vibration analysis of cyclic symmetric structures is considered as a Hermitian eigenvalue problem in semi‐complex domain using subspace iteration method is presented. The…

Abstract

The free vibration analysis of cyclic symmetric structures is considered as a Hermitian eigenvalue problem in semi‐complex domain using subspace iteration method is presented. The trial vectors are selected using a modified Ritz vector scheme. A modified convergence criterion which gives true error estimates which is suited for clustered eigenvalue problems is presented. Also the effect of purification of trial vectors on convergence is considered.

Details

Engineering Computations, vol. 10 no. 3
Type: Research Article
ISSN: 0264-4401

Keywords

Article
Publication date: 20 April 2015

Xiaofeng Guo, Yiqian He and Haitian Yang

– The purpose of this paper is to exploit the cyclic symmetry to reduce the computational expense of scaled boundary method (SBM) which may cumber its further application.

Abstract

Purpose

The purpose of this paper is to exploit the cyclic symmetry to reduce the computational expense of scaled boundary method (SBM) which may cumber its further application.

Design/methodology/approach

A partitioning EFG-SB (Element-free Galerkin-SB) algorithm is proposed for the two-dimensional elastic analysis of cyclically symmetric structures.

Findings

By utilizing the cyclic symmetry and partitioning algorithm, the whole computational cost can be significantly reduced. Three numerical examples are given to illustrate the advantages of the proposed algorithm.

Originality/value

It is proved that the matrices of eigenvalue and system equations of EFG-SBM for cyclically symmetric structures are block-circulant so long as a kind of symmetry-adapted reference coordinate system is adopted. No matter whether displacement constraints are cyclically symmetric or not, the partition is available for the eigenvalue equations. Therefore the major computational cost can be saved via the proposed partitioning algorithm. This paper provides an efficient algorithm for the two-dimensional elastic analysis of cyclically symmetric structures using EFG-SBM. A higher computing efficiency can be expected since the proposed partitioning algorithm facilitates parallel processing.

Details

Engineering Computations, vol. 32 no. 2
Type: Research Article
ISSN: 0264-4401

Keywords

Article
Publication date: 2 November 2015

Fabio De Angelis and Robert L. Taylor

The purpose of this paper is to present an efficient return mapping algorithm for elastoplastic constitutive problems of ductile metals with an exact closed form solution of the…

Abstract

Purpose

The purpose of this paper is to present an efficient return mapping algorithm for elastoplastic constitutive problems of ductile metals with an exact closed form solution of the local constitutive problem in the small strain regime. A Newton Raphson iterative method is adopted for the solution of the boundary value problem.

Design/methodology/approach

An efficient return mapping algorithm is illustrated which is based on an elastic predictor and a plastic corrector scheme resulting in an implicit and accurate numerical integration method. Nonlinear kinematic hardening rules and linear isotropic hardening rules are used to describe the components of the hardening variables. In the adopted algorithmic approach the solution of the local constitutive equations reduces to only one straightforward nonlinear scalar equation.

Findings

The presented algorithmic scheme naturally leads to a particularly simple form of the nonlinear scalar equation which ultimately scales down to an algebraic (polynomial) equation with a single variable. The straightforwardness of the present approach allows to find the analytical solution of the algebraic equation in a closed form. Further, the consistent tangent operator is derived as associated with the proposed algorithmic scheme and it is shown that the proposed computational procedure ensures a quadratic rate of asymptotic convergence when used with a Newton Raphson iterative method for the global solution procedure.

Originality/value

In the present approach the solution of the algebraic nonlinear equation is found in a closed form and accordingly no iterative method is required to solve the problem of the local constitutive equations. The computational procedure ensures a quadratic rate of asymptotic convergence for the global solution procedure typical of computationally efficient solution schemes. In the paper it is shown that the proposed algorithmic scheme provides an efficient and robust computational solution procedure for elastoplasticity boundary value problems. Numerical examples and computational results are reported which illustrate the effectiveness and robustness of the adopted integration algorithm for the finite element analysis of elastoplastic structures also under elaborate loading conditions.

Article
Publication date: 29 November 2018

Aref Mehditabar and Gholam H. Rahimi

This study aims to explain the characterization of cyclic behavior of a tube made of functionally graded material (FGM) under different combinations of internal pressure and cyclic

Abstract

Purpose

This study aims to explain the characterization of cyclic behavior of a tube made of functionally graded material (FGM) under different combinations of internal pressure and cyclic through-thickness temperature gradients.

Design/methodology/approach

The normality rule, nonlinear kinematic hardening Chaboche model and Von Mises yield criterion were used to model the constitutive behavior of an FG tube in the incremental form. The material properties and hardening parameters of the Chaboche model vary according to the power-law function in the radial direction. The backward Euler integration scheme combined with return mapping algorithm which relies on the solution of a nonlinear equation performs the numerical procedure. The algorithm is implemented within the user subroutine UMAT in ABAQUS/standard.

Findings

The published works on FG components considering only the mechanical and physical properties as a function of spatial coordinate and nonlinear kinematic hardening parameters have not been considered to be changed continuously from one surface to another. Motivated by this, the present paper has deliberately been targeted to tackle this kind of problem to simulate the cyclic behavior of an FG tube as accurately as possible. In addition, to classify various behaviors the FG tube under cyclic thermomechanical loadings, Bree’s interaction diagram as an essential tool in designing of the FG pressure vessels in many engineering sectors is presented.

Originality/value

Provides a detailed description of the FG parameters of Chaboche kinematic hardening parameters in the adopted constitutive equations. In this paper, the significant effects of internal pressure values, kinematic hardening models and also FG inhomogeneity index related to the hardening rule parameters on plastic deformation of the FG tube are illustrated. Finally, the various cyclic behaviors of the FG tube under different combinations of thermomechanical loading are fully explored.

Details

Engineering Computations, vol. 36 no. 1
Type: Research Article
ISSN: 0264-4401

Keywords

Article
Publication date: 5 June 2009

Anas N. Al‐Rabadi

New approaches for non‐classical neural‐based computing are introduced. The developed approaches utilize new concepts in three‐dimensionality, invertibility and reversibility to…

Abstract

Purpose

New approaches for non‐classical neural‐based computing are introduced. The developed approaches utilize new concepts in three‐dimensionality, invertibility and reversibility to perform the required neural computing. The various implementations of the new neural circuits using the introduced paradigms and architectures are presented, several applications are shown, and the extension for the utilization in neural‐systolic computing is also introduced.

Design/methodology/approach

The new neural paradigms utilize new findings in computational intelligence and advanced logic synthesis to perform the functionality of the basic neural network (NN). This includes the techniques of three‐dimensionality, invertibility and reversibility. The extension of implementation to neural‐systolic computing using the introduced reversible neural‐systolic architecture is also presented.

Findings

Novel NN paradigms are introduced in this paper. New 3D paradigm of NL circuits called three‐dimensional inverted neural logic (3DINL) circuits is introduced. The new 3D architecture inverts the inputs and weights in the standard neural architecture: inputs become bases on internal interconnects, and weights become leaves of the network. New reversible neural network (RevNN) architecture is also introduced, and a RevNN paradigm using supervised learning is presented. The applications of RevNN to multiple‐output feedforward discrete plant control and to reversible neural‐systolic computing are also shown. Reversible neural paradigm that includes reversible neural architecture utilizing the extended mapping technique with an application to the reversible solution of the maze problem using the reversible counterpropagation NN is introduced, and new neural paradigm of reversibility in both architecture and training using reversibility in independent component analysis is also presented.

Originality/value

Since the new 3D NNs can be useful as a possible optimal design choice for compacting a learning (trainable) circuit in 3D space, and because reversibility is essential in the minimal‐power computing as the reduction of power consumption is a main requirement for the circuit synthesis of several emerging technologies, the introduced methods for non‐classical neural computation are new and interesting for the design of several future technologies that require optimal design specifications such as three‐dimensionality, regularity, super‐high speed, minimum power consumption and minimum size such as in low‐power control, adiabatic signal processing, quantum computing, and nanotechnology.

Details

International Journal of Intelligent Computing and Cybernetics, vol. 2 no. 2
Type: Research Article
ISSN: 1756-378X

Keywords

Article
Publication date: 27 April 2022

Qixin Zhu, Yusheng Jin and Yonghong Zhu

The purpose of this paper is to propose a new acceleration/deceleration (acc/dec) algorithm for motion profiles. The motion efficiency, flexibility of the motion profiles and the…

Abstract

Purpose

The purpose of this paper is to propose a new acceleration/deceleration (acc/dec) algorithm for motion profiles. The motion efficiency, flexibility of the motion profiles and the residual vibration of the movement are discussed in this paper.

Design/methodology/approach

A dynamics model is developed to assess the residual vibration of these two kinds of motion profile. And a Simulink model is created to assess the motion efficiency and flexibility of the motion profiles with the proposed acc/dec algorithm.

Findings

Considering the flexibility of trigonometric motion profiles and the higher motion efficiency of S-curve motion profiles, the authors add the polynomial parts into the jerk profile of the cosine function acc/dec algorithm to hold the jerk when it reaches the maximum so that the motion efficiency can increase and decrease residual vibration at the same time. And the cyclical parameter k shows the decisive factor for the flexibility of trigonometric motion profiles.

Originality/value

Comparing with the traditional motion profiles, the proposed motion profiles have higher motion efficiency and excite less residual vibration. The acc/dec algorithm proposed in this paper is useful for the present motion control and servo system.

Details

Assembly Automation, vol. 42 no. 3
Type: Research Article
ISSN: 0144-5154

Keywords

Article
Publication date: 8 May 2018

Riccardo Fincato and Seiichiro Tsutsumi

Many practical problems in engineering require fast, accurate numerical results. In particular, in cyclic plasticity or fatigue simulations, the high number of loading cycles…

126

Abstract

Purpose

Many practical problems in engineering require fast, accurate numerical results. In particular, in cyclic plasticity or fatigue simulations, the high number of loading cycles increases the computation effort and time. The purpose of this study is to show that the return mapping technique in the framework of unconventional plasticity theories is a good compromise between efficiency and accuracy in finite element analyses.

Design/methodology/approach

The accuracy of the closest point projection method and the cutting plane method implementations for the subloading surface model are discussed under different loading conditions by analyzing the error as a function of the input step size and the efficiency of the algorithms.

Findings

Monotonic tests show that the two different implicit integration schemes have the same accuracy and are in good agreement with the solution obtained using an explicit forward Euler scheme, even for large input steps. However, the closest point projection method seems to describe better the evolution of the similarity centre in the cyclic loading analyses.

Practical implications

The purpose of this work is to show two alternative implicit integration schemes of the extended subloading surface method for metallic materials. The backward Euler integrations can guarantee a good description of the material behaviour and, at the same time, reduce the computational cost. This aspect is particularly important in the field of low or high cycle fatigue, because of the large number of cycles involved.

Originality/value

A detailed description of both the cutting plane and closest point projection methods is offered in this work. In particular, the two integrations schemes are compared in terms of accuracy and computation time for monotonic and cyclic loading tests.

Details

Engineering Computations, vol. 35 no. 3
Type: Research Article
ISSN: 0264-4401

Keywords

Article
Publication date: 24 April 2007

Göran Johansson and Magnus Ekh

This paper aims to speed up finite element analyses of structures with a highly nonlinear material response subjected to many loading cycles.

Abstract

Purpose

This paper aims to speed up finite element analyses of structures with a highly nonlinear material response subjected to many loading cycles.

Design/methodology/approach

An approach where large time increments are taken in an adaptive fashion is presented. The size of the large time increments typically spans several loading cycles and is based on Taylor series expansions of the response combined with error control.

Findings

The suggested adaptive algorithm is simple compared with some well‐known alternatives in the literature. It also has the inherent convergence property that it reduces to the classical time incrementation in the case where the estimated error is too large.

Research limitations/implications

The algorithm is suitable for (restricted to) a special class of problems where the material response versus a representative time sequence are smooth curves. The simplicity of the method results in a robust algorithm.

Originality/value

Similar algorithms have been presented earlier in the literature but the present work introduces some enhancements, e.g. accounting for general internal variables also in the error estimate. In addition, the present work considers a more complex constitutive model compared with earlier work within the research field.

Details

Engineering Computations, vol. 24 no. 3
Type: Research Article
ISSN: 0264-4401

Keywords

Article
Publication date: 1 June 2000

A. Savini

Gives introductory remarks about chapter 1 of this group of 31 papers, from ISEF 1999 Proceedings, in the methodologies for field analysis, in the electromagnetic community…

1134

Abstract

Gives introductory remarks about chapter 1 of this group of 31 papers, from ISEF 1999 Proceedings, in the methodologies for field analysis, in the electromagnetic community. Observes that computer package implementation theory contributes to clarification. Discusses the areas covered by some of the papers ‐ such as artificial intelligence using fuzzy logic. Includes applications such as permanent magnets and looks at eddy current problems. States the finite element method is currently the most popular method used for field computation. Closes by pointing out the amalgam of topics.

Details

COMPEL - The international journal for computation and mathematics in electrical and electronic engineering, vol. 19 no. 2
Type: Research Article
ISSN: 0332-1649

Keywords

1 – 10 of 192