Search results

1 – 10 of 305
Article
Publication date: 15 January 2018

Linxian Ji, Shidong Su, Hexian Nie, Shouxu Wang, Wei He, Kehua Ai and Qinghua Li

Copper electrodeposition acts as a crucial step in the manufacture of high-density interconnect board. The stability of plating solution and the uniformity of copper

Abstract

Purpose

Copper electrodeposition acts as a crucial step in the manufacture of high-density interconnect board. The stability of plating solution and the uniformity of copper electrodeposit are the hotspot and difficulty for the research of electrodeposition. Because a large number of factors are included in electrodeposition, experimentally determining all parameters and electrodeposition conditions becomes unmanageable. Therefore, a multiphysics coupling technology was introduced to investigate microvia filling process, and the mechanism of copper electrodeposition was analyzed. The results provide a strong theoretical basis and technical guidance for the actual electroplating experiments. The purpose of this paper is to provide an excellent tool for quickly and cheaply studying the process behavior of copper electrodeposition without actually needing to execute time-consuming and costly experiments.

Design/methodology/approach

The interactions among additives used in acidic copper plating solution for microvia filling and the effect on the copper deposition potential were characterized through galvanostatic measurement (GM). The adsorption behavior and surface coverage of additives with various concentrations under different rotating speeds of working electrode were investigated using cyclic voltammetry (CV) measurements. Further, a microvia filling model was constructed using multiphysics coupling technology based on the finite element method.

Findings

GM tests showed that accelerator, inhibitor and leveler affected the potential of copper electrodeposition, and bis(3-sulfopropyl) disulfide (SPS), ethylene oxide-propylene oxide (EO/PO) co-polymer, and self-made leveler were the effective additives in acidic copper plating solution. CV tests showed that EO/PO–Cu+-Cl complex was adsorbed on the electrode surface by intermolecular forces, thus inhibiting copper electrodeposition. Numerical simulation indicated that the process of microvia filling included initial growth period, the outbreak period and the stable growth period, and modeling result was compared with the measured data, and a good agreement was observed.

Research limitations/implications

The research is still in progress with the development of high-performance computers.

Practical implications

A multiphysics coupling platform is an excellent tool for quickly and cheaply studying the electrodeposited process behaviors under a variety of operating conditions.

Social implications

The numerical simulation method has laid the foundation for mechanism of copper electrodeposition.

Originality/value

By using multiphysics coupling technology, the authors built a bridge between theoretical and experimental study for microvia filling. This method can help explain the mechanism of copper electrodeposition.

Details

Circuit World, vol. 44 no. 2
Type: Research Article
ISSN: 0305-6120

Keywords

Article
Publication date: 21 December 2022

Vimal Kumar Deshmukh, Mridul Singh Rajput and H.K. Narang

The purpose of this paper is to present current state of understanding on jet electrodeposition manufacturing; to compare various experimental parameters and their implication on…

Abstract

Purpose

The purpose of this paper is to present current state of understanding on jet electrodeposition manufacturing; to compare various experimental parameters and their implication on as deposited features; and to understand the characteristics of jet electrodeposition deposition defects and its preventive procedures through available research articles.

Design/methodology/approach

A systematic review has been done based on available research articles focused on jet electrodeposition and its characteristics. The review begins with a brief introduction to micro-electrodeposition and high-speed selective jet electrodeposition (HSSJED). The research and developments on how jet electrochemical manufacturing are clustered with conventional micro-electrodeposition and their developments. Furthermore, this study converges on comparative analysis on HSSJED and recent research trends in high-speed jet electrodeposition of metals, their alloys and composites and presents potential perspectives for the future research direction in the final section.

Findings

Edge defect, optimum nozzle height and controlled deposition remain major challenges in electrochemical manufacturing. On-situ deposition can be used as initial structural material for micro and nanoelectronic devices. Integration of ultrasonic, laser and acoustic source to jet electrochemical manufacturing are current trends that are promising enhanced homogeneity, controlled density and porosity with high precision manufacturing.

Originality/value

This paper discusses the key issue associated to high-speed jet electrodeposition process. Emphasis has been given to various electrochemical parameters and their effect on deposition. Pros and cons of variations in electrochemical parameters have been studied by comparing the available reports on experimental investigations. Defects and their preventive measures have also been discussed. This review presented a summary of past achievements and recent advancements in the field of jet electrochemical manufacturing.

Article
Publication date: 2 February 2015

Linxian Ji, Chong Wang, Shouxu Wang, Wei He, Dingjun Xiao and Ze Tan

The purpose of this paper is to optimize experimental parameters and gain further insights into the plating process in the fabrication of high-density interconnections of printed…

Abstract

Purpose

The purpose of this paper is to optimize experimental parameters and gain further insights into the plating process in the fabrication of high-density interconnections of printed circuit boards (PCBs) by the rotating disc electrode (RDE) model. Via metallization by copper electrodeposition for interconnection of PCBs has become increasingly important. In this metallization technique, copper is directly filled into the vias using special additives. To investigate electrochemical reaction mechanisms of electrodeposition in aqueous solutions, using experiments on an RDE is common practice.

Design/methodology/approach

An electrochemical model is presented to describe the kinetics of copper electrodeposition on an RDE, which builds a bridge between the theoretical and experimental study for non-uniform copper electrodeposition in PCB manufacturing. Comsol Multiphysics, a multiphysics simulation platform, is invited to modeling flow field and potential distribution based on a two-dimensional (2D) axisymmetric physical modeling. The flow pattern in the electrolyte is determined by the 2D Navier–Stokes equations. Primary, secondary and tertiary current distributions are performed by the finite element method of multiphysics coupling.

Findings

The ion concentration gradient near the cathode and the thickness of the diffusion layer under different rotating velocities are achieved by the finite element method of multiphysics coupling. The calculated concentration and boundary layer thicknesses agree well with those from the theoretical Levich equation. The effect of fluid flow on the current distribution over the electrode surface is also investigated in this model. The results reveal the impact of flow parameters on the current density distribution and thickness of plating layer, which are most concerned in the production of PCBs.

Originality/value

By RDE electrochemical model, we build a bridge between the theoretical and experimental study for control of uniformity of plating layer by concentration boundary layer in PCB manufacturing. By means of a multiphysics coupling platform, we can accurately analyze and forecast the characteristic of the entire electrochemical system. These results reveal theoretical connections of current density distribution and plating thickness, with controlled parameters in the plating process to further help us comprehensively understand the mechanism of copper electrodeposition.

Details

Circuit World, vol. 41 no. 1
Type: Research Article
ISSN: 0305-6120

Keywords

Article
Publication date: 28 January 2014

Kazimierz Drabczyk, Robert Socha, Piotr Panek and Grzegorz Mordarski

– The paper aims to show application of the electrochemically deposited coatings for thickening of the screen printed electric paths potentially applied in photovoltaic cells.

Abstract

Purpose

The paper aims to show application of the electrochemically deposited coatings for thickening of the screen printed electric paths potentially applied in photovoltaic cells.

Design/methodology/approach

The electric paths were screen printed with the use of silver-based paste. The paths were thickened by electrodeposition of thin copper layer in potentiostatic regime from surfactant-free plating bath. The morphology and surface quality of the paths were studied by imaging with scanning electron microscopy.

Findings

The electric paths can be thickened successfully, but quality for the screen printed substrate determines quality of deposited layer. The EDX analysis confirmed that the deposited copper layer covered uniformly the printed paths.

Research limitations/implications

The adhesion of the copper-covered path to the silicon wafer surface depends on adhesion of the original screen printed path.

Originality/value

This paper confirms that electrodeposited copper can be applied for screen printed silver paths thickening in a controllable way.

Details

Soldering & Surface Mount Technology, vol. 26 no. 1
Type: Research Article
ISSN: 0954-0911

Keywords

Article
Publication date: 1 December 2000

H.D. Merchant, J.T. Wang, L.A. Giannuzzi and Y.L. Liu

In this paper, we consider intrinsic properties of copper electrodeposited as plateup on polyimide substrate, thermal response of electrodeposited copper and fatigue performance…

2270

Abstract

In this paper, we consider intrinsic properties of copper electrodeposited as plateup on polyimide substrate, thermal response of electrodeposited copper and fatigue performance of copper and copper/polyimide construction. The critical material characteristics examined are grain morphology and structure, crystallographic texture, microhardness, uniaxial strength and ductility and isothermal cyclic fatigue life. Given optimum processing conditions, copper plateup in flexible circuits displays fine grain structure, high ductility, adequate thermal stability, freedom from thermal embrittlement and excellent fatigue endurance over a wide range of strain amplitudes.

Details

Circuit World, vol. 26 no. 4
Type: Research Article
ISSN: 0305-6120

Keywords

Article
Publication date: 29 July 2014

Jing Wang, Miao Wu and Chengqiang Cui

The purpose of this paper is to present a clear picture of the key factors of blind via and through hole filling in electroplating, e.g. shape of via or hole, electroplating…

1110

Abstract

Purpose

The purpose of this paper is to present a clear picture of the key factors of blind via and through hole filling in electroplating, e.g. shape of via or hole, electroplating solution, process, as well as the developments of mechanisms and models.

Design/methodology/approach

First, the paper details the development trends and challenges of via filling. Then the research status of mechanisms, electroplating solutions, including base solution and additives, numerical model and mass transfer is described. Finally, through hole filling is briefly reviewed.

Findings

To achieve excellent via filling performance, the characteristics of the via or hole, the ratio of acid/copper, selection of additives and factors of mass transfer are comprehensively considered in terms of optimization of the electroplating process. It is beneficial to design vias with appropriate aspect ratios, to strengthen the adsorption of the accelerator in the via bottom, to inhibit the increase of surface copper thickness and to form butterfly-shaped copper in the centre of through holes. Optimized process parameters should be taken into consideration in superfilling.

Originality/value

The paper reviews different sets of additives, mechanisms and superfilling models for state-of-the-art via filling and the developments of filling for through holes.

Details

Circuit World, vol. 40 no. 3
Type: Research Article
ISSN: 0305-6120

Keywords

Article
Publication date: 16 August 2019

Zhihua Tao, Guanting Liu, Yuanxun Li and Hua Su

The adsorption and acceleration behavior of 3-mercaptopropyl sulfonate (MPS) were investigated by electrochemical tests for microvia filling by copper electroplating.

Abstract

Purpose

The adsorption and acceleration behavior of 3-mercaptopropyl sulfonate (MPS) were investigated by electrochemical tests for microvia filling by copper electroplating.

Design/methodology/approach

The synergistic effects of one suppressor of propylene oxide ethylene oxide propylene oxide named PEP and MPS as the accelerator during copper electroplating were also investigated by electrochemical methods such as electrochemical impedance spectroscopy cyclic voltammetric stripping (CVS) and Galvanostatic measurements (GMs).

Findings

The research results suggest that the adsorption of MPS onto the Cu-RDE metal surface was a spontaneous process and the adsorbing of MPS on cathode was proposed to physical-chemistry adsorption in the plating formula. There was no potential difference (i.e. ?? = 0) of GMs until MPS was injected into the plating solution suggest that copper deposition is not diffusion-controlled in the presence of PEP–Cl–JGB.

Originality/value

A new composition of plating bath was found to be effective to perform bottom-up copper filling of microvias in the fabrication of PCB in electronic industries. The adsorption of MPS into the Cu-RDE metal surface was a spontaneous process and the adsorbing of MPS on cathode was studied by EIS and the results proposed to physical-chemistry adsorption in the plating formula. An optimal plating solution composed of CuSO4, H2SO4, chloride ions, PEP, MPS and JGB was obtained, and the microvia could be fully filled using the plating formula.

Article
Publication date: 2 May 2017

Z. Abdel Hamid, A.Y. El-Etre and M. Fareed

The purpose of this study is to investigate the effect of the incorporated zirconia (ZrO2) nanoparticles on the performance of the deposited layer Ni–Cu alloy on steel sheet.

Abstract

Purpose

The purpose of this study is to investigate the effect of the incorporated zirconia (ZrO2) nanoparticles on the performance of the deposited layer Ni–Cu alloy on steel sheet.

Design/methodology/approach

The aim was to produce Ni–Cu–ZrO2 nanocomposite coatings by electrodeposition technique and estimate the influence of ZrO2 nanoparticles on the performance of Ni–Cu alloy. The surface morphologies and chemical compositions of the deposited layers were assessed using scanning electron microscopy and energy-dispersive X-ray analysis, respectively. Nanoindentation was used as a well-advanced technique for measuring microhardness and Young’s modulus values of different coatings. The corrosion resistance in 3.5 per cent NaCl solution of electrodeposited films has been investigated.

Findings

The main conclusion is that the surface morphologies of Ni–Cu–ZrO2 nanocomposite coatings were fine granular compared with Ni–Cu alloy. The corrosion behavior illustrated that the incorporation of ZrO2 nanoparticles with Ni–Cu film improved the corrosion resistance. Significant improvement was also demonstrated in the hardness of nanocomposite coatings.

Social implications

The optimized industrial use of steel-coated Ni–Cu alloy with super properties. Consequently, a social benefit can be associated with the reduction in the corrosion rate and increases the microhardness and Young’s modulus.

Originality/value

The results presented in this work are an insight into understanding the incorporation of ceramic reinforcement with metal or alloy films (matrix) on carbon steel using the electrodeposition technique. The development of corrosion resistance of Ni–Cu alloys has been considered as a promising behavior. In this work, a consistent assessment of the results achieved on laboratory scale has been conducted.

Details

Anti-Corrosion Methods and Materials, vol. 64 no. 3
Type: Research Article
ISSN: 0003-5599

Keywords

Content available
Article
Publication date: 1 April 2000

25

Abstract

Details

Microelectronics International, vol. 17 no. 1
Type: Research Article
ISSN: 1356-5362

Keywords

Article
Publication date: 1 June 2003

Mark Lefebvre, George Allardyce, Masaru Seita, Hideki Tsuchida, Masaru Kusaka and Shinjiro Hayashi

This paper describes a copper electroplating enabling technology for filling microvias. Driven by the need for faster, smaller and higher performance communication and electronic…

2739

Abstract

This paper describes a copper electroplating enabling technology for filling microvias. Driven by the need for faster, smaller and higher performance communication and electronic devices, sequential build up (SBU) technology has been adopted as a viable multilayer printed circuit manufacturing technology. Increased wiring density, reduced line widths, smaller through‐holes and microvias are all attributes of these high density interconnect (HDI) packages. Filling the microvias with conductive material allows the use of stacked vias and via in pad designs. Other potential design attributes include thermal management enhancement and benefits for high frequency circuitry. Electrodeposited copper can be utilized for filling microvias and provides potential advantages over alternative via plugging techniques. The features, development, scale up and results of direct current (DC) and periodic pulse reverse (PPR) acid copper via filling processes, including chemistry and equipment, are described.

Details

Circuit World, vol. 29 no. 2
Type: Research Article
ISSN: 0305-6120

Keywords

1 – 10 of 305