Search results

1 – 10 of over 3000
Article
Publication date: 17 May 2011

Sheng‐hong Chen, Peifang Su and Isam Shahrour

Pipe cooling is an important measure for controlling the temperature in mass concrete. Since the temperature field in mass concrete containing cooling pipes is unsteady and…

Abstract

Purpose

Pipe cooling is an important measure for controlling the temperature in mass concrete. Since the temperature field in mass concrete containing cooling pipes is unsteady and three‐dimensional, and there are huge quantities of the cooling pipes in the concrete, the study of efficient and reliable algorithm is crucial. The purpose of this paper is to develop the composite element method (CEM) for the temperature field in mass concrete containing cooling pipes.

Design/methodology/approach

Each cooling pipe segment is looked at as a special sub‐element having definite thermal characteristics, which is located explicitly within the composite element. By the variational principle, the governing equation for the composite element containing cooling pipes is established.

Findings

One of the remarkable advantages of the method proposed is that each cooling pipe can be simulated explicitly while the difficulty of mesh generation around cooling pipes can be avoided.

Originality/value

The paper demonstrates how composite elements containing cooling pipes are degenerated to the conventional finite elements automatically when the first stage artificial cooling finished, and conversely, the conventional finite elements can also be transformed to the composite elements automatically when the second stage artificial cooling started. The comparison of the numerical example using FEM and CEM shows the rationality of the proposed method.

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. 21 no. 4
Type: Research Article
ISSN: 0961-5539

Keywords

Article
Publication date: 16 March 2020

Zhenyang Zhu, Yi Liu, Zhe Fan, Sheng Qiang, Zhiqiang Xie, Weimin Chen and Congcong Wu

The buried pipe element method can be used to calculate the temperature of mass concrete through highly efficient computing. However, in this method, temperatures along cooling

Abstract

Purpose

The buried pipe element method can be used to calculate the temperature of mass concrete through highly efficient computing. However, in this method, temperatures along cooling pipes and the convection coefficient of the cooling pipe boundary should be improved to achieve higher accuracy. Thus, there is a need to propose a method for improvement.

Design/methodology/approach

According to the principle of heat balance and the temperature gradient characteristics of concrete around cooling pipes, a method to calculate the water temperature along cooling pipes using the buried pipe element method is proposed in this study. By comparing the results of a discrete algorithm and the buried pipe element method, it was discovered that the convection coefficient of the cooling pipe boundary for the buried pipe element method is only related to the thermal conductivity of concrete; therefore, it can be calculated by inverse analysis.

Findings

The results show that the buried pipe element method can achieve the same accuracy as the discrete method and simulate the temperature field of mass concrete with cooling pipes efficiently and accurately.

Originality/value

This new method can improve the calculation accuracy of the embedded element method and make the calculation results more reasonable and reliable.

Details

Engineering Computations, vol. 37 no. 8
Type: Research Article
ISSN: 0264-4401

Keywords

Article
Publication date: 21 August 2007

Shiaw‐Wen Tien, Chung‐Ching Chiu, Yi‐Chan Chung, Chih‐Hung Tsai and Chin‐Fa Chang

Life Cycle Assessment (LCA) aims to analyze possible impact upon manufacturing process and availability of products, and also study the environmental considerations and potential…

Abstract

Life Cycle Assessment (LCA) aims to analyze possible impact upon manufacturing process and availability of products, and also study the environmental considerations and potential influence during entire life cycle ranging from procurement, production and utilization to treatment (namely, from cradle to tomb). Based on high‐density polyethylene (HDPE) pipe manufacturing of company A, this case study would involve evaluation of environmental influence during the production process. When the manufacturing process has been improved during “production process” and “forming cooling” stage, it is found that capital input on “electric power” and “water supply” could be reduced, thus helping to sharpen the competitive power of company A, and also ensure sustainable economic and industrial development in accordance with national policies on environmental protection.

Details

Asian Journal on Quality, vol. 8 no. 2
Type: Research Article
ISSN: 1598-2688

Keywords

Article
Publication date: 13 March 2020

Zhiqiang Xie, Lei Wang, Zhengyang Zhu, Zhi Fu and Xingdong Lv

The purpose of this paper is to introduce an interval finite element method (IFEM) to simulate the temperature field of mass concrete under multiple influence uncertainties e.g…

Abstract

Purpose

The purpose of this paper is to introduce an interval finite element method (IFEM) to simulate the temperature field of mass concrete under multiple influence uncertainties e.g. environmental temperature, material properties, pouring construction and pipe cooling.

Design/methodology/approach

Uncertainties of the significant factors such as the ambient temperature, the adiabatic temperature rise, the placing temperature and the pipe cooling are comprehensively studied and represented as the interval numbers. Then, an IFEM equation is derived and a method for obtaining interval results based on monotonicity is also presented. To verify the proposed method, a non-adiabatic temperature rise test was carried out and subsequently simulated with the method. An excellent agreement is achieved between the simulation results and the monitoring data.

Findings

An IFEM method is proposed and a non-adiabatic temperature rise test is simulated to verify the method. The interval results are discussed and compared with monitoring data. The proposed method is found to be feasible and effective.

Originality/value

Compared with the traditional finite element methods, the proposed method taking the uncertainty of various factors into account and it will be helpful for engineers to gain a better understanding of the real condition.

Details

Engineering Computations, vol. 37 no. 7
Type: Research Article
ISSN: 0264-4401

Keywords

Article
Publication date: 24 April 2007

Pawan Gupta, Arvind Kumar Lal, Rajendra Kumar Sharma and Jai Singh

The purpose of this paper is to compute reliability, availability, and mean time before failure of the process of a plastic‐pipe manufacturing plant consisting of a (K, N) system…

1151

Abstract

Purpose

The purpose of this paper is to compute reliability, availability, and mean time before failure of the process of a plastic‐pipe manufacturing plant consisting of a (K, N) system for various choices of failure and repair rates of sub‐systems. This plant consists of eight sub‐systems.

Design/methodology/approach

In this paper the Chapman‐Kolmogorov differential equations are formed using mnemonic rule from the transition diagram of the plastic‐pipe manufacturing plant. The governing differential equations are solved using matrix method in order to find the reliability of the system with the help of MATLAB software. The same system of differential equations is solved numerically using Runge‐Kutta fourth order method to validate the results obtain by MATLAB.

Findings

The findings in the paper are an analysis of reliability, availability and mean time before failure of plastic‐pipe manufacturing plant has been carried out.

Practical implications

This paper proposes matrix calculus method using MATLAB software to find out the reliability of the plastic‐pipe manufacturing plant. This approach can be implemented to find reliability of other manufacturing plants as well.

Originality/value

The findings suggest that the management of the plastic‐pipe manufacturing plant 's sensitive sub‐system is important to improve its performance.

Details

International Journal of Quality & Reliability Management, vol. 24 no. 4
Type: Research Article
ISSN: 0265-671X

Keywords

Article
Publication date: 1 March 1989

Bennett J. Price

This article discusses the basics of computer‐room air conditioning, an important component of the special environment required by mainframe computers and many mini‐computers as…

Abstract

This article discusses the basics of computer‐room air conditioning, an important component of the special environment required by mainframe computers and many mini‐computers as well. Computer room air conditioners differ in some significant ways from “comfort” air‐conditioners, which are designed for the comfort of people rather than machines. These differences make it less than ideal to use air conditioning systems designed for human comfort for computer cooling. The author describes several different types of air‐conditioners, considerations related to the construction of a computer room, and factors that determine air‐conditioning requirements.

Details

Library Hi Tech, vol. 7 no. 3
Type: Research Article
ISSN: 0737-8831

Article
Publication date: 1 November 1949

IN reviewing the progress and promise of turbine‐engined transport aircraft, it is intended to cover pure jet, propeller turbine and compound turbine engines impartially. If the…

Abstract

IN reviewing the progress and promise of turbine‐engined transport aircraft, it is intended to cover pure jet, propeller turbine and compound turbine engines impartially. If the emphasis tends to fall on problems covering the installation and control of propeller turbines, this is because the author has been most closely connected with this type of engine in the past few years.

Details

Aircraft Engineering and Aerospace Technology, vol. 21 no. 11
Type: Research Article
ISSN: 0002-2667

Article
Publication date: 12 January 2010

O.D. Makinde and M. Maserumule

The purpose of this paper is to investigate the inherent irreversibility and thermal stability in the flow of a variable viscosity fluid through a cylindrical pipe with convective…

Abstract

Purpose

The purpose of this paper is to investigate the inherent irreversibility and thermal stability in the flow of a variable viscosity fluid through a cylindrical pipe with convective cooling at the surface.

Design/methodology/approach

The non‐linear momentum and energy equations governing the flow are solved analytically using a perturbation method coupled with a special type of Hermite‐Padé approximation technique implemented numerically on MAPLE.

Findings

Expressions for dimensionless velocity and temperature, thermal criticality conditions and entropy generation number are obtained. A decrease in the fluid viscosity enhances both entropy generation rate and the dominant effect of heat transfer irreversibility near the wall

Originality/value

This paper presents the application of the second law of thermodynamics and a special type of Hermite‐Padé approximation technique to variable viscosity cylindrical pipe flow with convective cooling at the wall.

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. 20 no. 1
Type: Research Article
ISSN: 0961-5539

Keywords

Book part
Publication date: 5 June 2023

Sonali A. Deshmukh, Praveen Barmavatu, Mihir Kumar Das, Bukke Kiran Naik, Vineet Singh Sikarwar, Alety Shivakrishna, Radhamanohar Aepuru and Rathod Subash

This study has covered many types of solar-powered air-conditioning systems that may be used as an alternative to traditional electrically powered air-conditioning systems in…

Abstract

This study has covered many types of solar-powered air-conditioning systems that may be used as an alternative to traditional electrically powered air-conditioning systems in order to reduce energy usage. Solar adsorption air cooling is a great alternative to traditional vapor compression air-conditioning. Solar adsorption has several advantages over traditional vapor-compression systems, including being a green cooling technology which uses solar energy to drive the cycle, using pure water as an eco-friendly HFC-free refrigerant, and being mechanically simple with only the magnetic valves as moving parts. Several advancements and breakthroughs have been developed in the area of solar adsorption air-conditioners during the previous decade. However, further study is required before this technology can be put into practise. As a result, this book chapter highlights current research that adds to the understanding of solar adsorption air-conditioning technologies, with a focus on practical research. These systems have the potential to become the next iteration of air-conditioning systems, with the benefit of lowering energy usage while using plentiful solar energy supplies to supply the cooling demand.

Article
Publication date: 15 February 2022

Hakan F. Oztop, Rıdvan Özgül and Fatih Selimefendigil

The purpose of this paper is to analyze the performance of a data center and thermal management by using phase change material (PCM). Numerical studies were conducted for two…

Abstract

Purpose

The purpose of this paper is to analyze the performance of a data center and thermal management by using phase change material (PCM). Numerical studies were conducted for two dimensional model of data center and installation of PCM at different locations.

Design/methodology/approach

Finite volume method was used for the unsteady problem, while impacts of air velocity and PCM location on the flow field, thermal pattern variations and phase change dynamics were evaluated. Three different locations of the PCM were considered while air velocity was also varied during the simulation. Thermal field variations and cooling performance of the system for different PCM location scenarios were compared.

Findings

It was observed that the installation of the PCM has significant impacts on the vortex formation, thermal field variation within the system and its performance. The left, right and top wall installation of the PCM changed the thermal patterns near the heat cell of the data centre. The phase change process is fast for the upper wall installation of the PCM, while the discrepancy of the melt fraction dynamics between different air flow at this position is minimum. The case where PCM placed in the upper wall at the highest air velocity is the best configuration in terms of heat storage. The utilization of PCM and changing its locations provide an excellent tool for thermal management and cooling performance of data centre.

Originality/value

Results of this study can be used for initial design and optimization of cooling systems for thermal management of data centers while the importance of the high-performance computing becomes very crucial for the advanced simulations in different technological applications.

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. 32 no. 10
Type: Research Article
ISSN: 0961-5539

Keywords

1 – 10 of over 3000