Search results

1 – 2 of 2
Article
Publication date: 31 January 2024

Dangshu Wang, Menghu Chang, Licong Zhao, Yuxuan Yang and Zhimin Guan

This study aims to regarding the application of traditional pulse frequency modulation control full-bridge LLC resonant converters in wide output voltage fields such as on-board…

Abstract

Purpose

This study aims to regarding the application of traditional pulse frequency modulation control full-bridge LLC resonant converters in wide output voltage fields such as on-board chargers, there are issues with wide frequency adjustment ranges and low conversion efficiency.

Design/methodology/approach

To address these issues, this paper proposes a fixed-frequency pulse width modulation (PWM) control strategy for a full-bridge LLC resonant converter, which adjusts the gain by adjusting the duty cycle of the switches. In the full-bridge LLC converter, the two switches of the lower bridge arm are controlled by a fixed-frequency and fixed duty cycle, with their switching frequency equal to the resonant frequency, whereas the two switches of the upper bridge arm are controlled by a fixed-frequency PWM to adjust the output voltage. The operation modes of the converter are analyzed in detail, and a mathematical model of the converter is established. The gain characteristics of the converter under the fixed-frequency PWM control strategy are deeply analyzed, and the conditions for implementing zero-voltage switching (ZVS) soft switching in the converter are also analyzed in detail. The use of fixed-frequency PWM control simplifies the design of resonant parameters, and the fixed-frequency control is conducive to the design of magnetic components.

Findings

According to the fixed-frequency PWM control strategy proposed in this paper, the correctness of the control strategy is verified through simulation and the development and testing of a 500-W experimental prototype. Test results show that the primary side switches of the converter achieve ZVS and the secondary side rectifier diodes achieve zero-current switching, effectively reducing the switching losses of the converter. In addition, the control strategy reduces the reactive circulating current of the converter, and the peak efficiency of the experimental prototype can reach 95.2%.

Originality/value

The feasibility of the fixed-frequency PWM control strategy was verified through experiments, which has significant implications for improving the efficiency of the converter and simplifying the design of resonant parameters and magnetic components in wide output voltage fields such as on-board chargers.

Details

Circuit World, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 0305-6120

Keywords

Article
Publication date: 28 March 2023

Bin Chen, Xin Tao, Nina Wan and Bo Tang

The purpose of this paper is to study the multi-objective optimization design method of high-power high-frequency magnetic-resonance air-core transformer (ACT).

Abstract

Purpose

The purpose of this paper is to study the multi-objective optimization design method of high-power high-frequency magnetic-resonance air-core transformer (ACT).

Design/methodology/approach

First, this paper studies the interleaved winding technology, the process of modeling and simulation, the calculation method of high-frequency loss of Litz wire and the design of magnetic shielding in detail. Second, the multi-objective optimization design process of high-frequency magnetic-resonance ACT is established by parametric scanning method and orthogonal experiment method.

Findings

An ACT model of 2 kV/100 kW/81.34 kHz was designed. The efficiency, weight power density and volume power density are 99.61%, 21.6 kW/kg and 5.1 kW/kg, respectively. Finally, the multi-physical field coupling simulation method is used to calculate the port excitation voltages and currents and temperature field of ACT. The maximum temperature of the ACT is 95.5 °C, which meets the design requirements.

Originality/value

The above research provides guidance and basis for the optimization design of high-power high-frequency magnetic-resonance ACT.

Details

COMPEL - The international journal for computation and mathematics in electrical and electronic engineering , vol. 42 no. 3
Type: Research Article
ISSN: 0332-1649

Keywords

1 – 2 of 2