Search results

1 – 10 of 91
Article
Publication date: 21 February 2020

Yuni Sri Rahayu

The study aimed at developing the bioremediation model of Lapindo mud through multisymbiotic organism.

Abstract

Purpose

The study aimed at developing the bioremediation model of Lapindo mud through multisymbiotic organism.

Design/methodology/approach

The research was conducted using completely randomized design. The model plants chosen in this research were soybean. The interaction pattern during the treatment was used to develop the bioremediation model based on the parameters.

Findings

The results showed that there was an effect of the type of organism on the parameters, namely: the growth of plant (biomass, height, length of root, and number of leaves), the biomass of root nodules, the percentage of mycorrhizal infection, the content of water, nitrogen, phosphorus, and total petroleum hydrocarbons (TPHs). There was a pattern of multisymbiotic interaction between each organism and roles of each symbiont in that interaction. Therefore, the plants were capable of surviving in the environment of Sidoarjo Lapindo mud. This pattern can be named as the bioremediation model proposed, which is the analogy of tripartite symbiosis between plants, mycorrhizae, and Rhizobium but also adding plant growth bacteria such as phosphate-solubilizing bacteria and hydrocarbon degradation bacteria. The implementation of this model can be used to treat oil-contaminated soil in order to be used as a plant growth medium.

Originality/value

Phytoremediation is a new and promising approach to remove contaminants in the environment but using plants alone for remediation confronts many limitations. Therefore, the application of plant-growth-promoting rhizobia (PGPR) has been extended to remediate contaminated soils in association with plants (Zhuang et al., 2007). The development of the model will use the analogy of tripartite symbiosis between plants, mycorrhizae, and Rhizobium. The developed model will be based on the interaction pattern on each parameters obtained. Bioremediation is chosen because it is considered an effective technique to transform toxic components into less toxic products without disrupting the surrounding environment. Besides, bioremediation is cheaper and environment-friendly because it utilizes microorganisms to clean pollutants from the environment (Nugroho, 2006).

Details

Management of Environmental Quality: An International Journal, vol. 31 no. 3
Type: Research Article
ISSN: 1477-7835

Keywords

Article
Publication date: 15 April 2024

Ann Wairimu Mburu, David Githinji Njuguna, Fredrick Musieba, Charles Nzila, Virginia Kimani and Alice Wangai

The purpose of this paper is to investigate the efficacy of bacterial exopolysaccharides (Eps) in reactive black 5 (RB5) textile dye wastewater bioremediation.

Abstract

Purpose

The purpose of this paper is to investigate the efficacy of bacterial exopolysaccharides (Eps) in reactive black 5 (RB5) textile dye wastewater bioremediation.

Design/methodology/approach

The Eps were produced by bacteria isolated from cotton gin trash soils collected from different cotton-growing regions in Kenya for comparison purposes. A broth medium reconstituted using molasses was assessed for its capacity to produce the Eps. RB5 textile dye wastewater was optimized for dye removal under different temperatures, times and molasses concentrations. Dye removal was studied by Lovibond-Day Light Comparator, UV–Vis spectrophotometer and FTIR.

Findings

It was found that cotton gin trash soils contained Eps-producing bacteria. Three of the Eps studied were found to have the capacity to remove at least 80% of the dye from the wastewater.

Research limitations/implications

This research did not assess the efficacy of the RB5 dye removal from the wastewater by mixtures of the Eps.

Practical implications

Bioremediation of textile dye wastewater with Eps produced by bacteria cultured from cotton gin trash soil is significant because it will offer an effective and cleaner alternative to the chemical coagulants.

Social implications

Alternative treatment of textile wastewater with the Eps would result in safer water being released into the water bodies as opposed to the chemically treated wastewater that contains remnant chemicals.

Originality/value

Research on the use of Eps produced by bacteria isolated from cotton gin trash soils for removal of RB5 dye from textile wastewater has not been done before.

Details

Research Journal of Textile and Apparel, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 1560-6074

Keywords

Article
Publication date: 1 March 1999

S.M.E. Meehan, T.R. Weaver and C.R. Lawrence

Cyanide is extremely toxic to both human and aquatic life and exists as a contaminant in soils and groundwater at decommissioned gasworks sites due to past industrial practices…

Abstract

Cyanide is extremely toxic to both human and aquatic life and exists as a contaminant in soils and groundwater at decommissioned gasworks sites due to past industrial practices. This included the processing and disposal of gas purification wastes which contained cyanide. The biodegradability of cyanide at gasworks sites in south‐eastern Australia is investigated to determine the viability of in situ bioremediation. Two study sites show cyanide concentrations in groundwater of up to 5,300mg/L CN (total) in the vicinty of these sites. Laboratory experiments using column microcosms indicate both aerobic and anaerobic biodegradation of cyanide in water. Rates of degradation are typically first order with degradation microbiologically driven and are not simple oxidation‐reduction reactions. The rate of degradation is variable, depending on the existence of microbes, concentration and temperature. Even though both sites have cyanide contamination, only one requires remediation. In situ bioremediation is possible at this site thus providing an acceptable outcome to both site owner and the environment.

Details

Environmental Management and Health, vol. 10 no. 1
Type: Research Article
ISSN: 0956-6163

Keywords

Article
Publication date: 17 October 2022

Maryam Gholami, Amir Hossein Mahvi, Fahimeh Teimouri, Mohammad Hassan Ehrampoush, Abbasali Jafari Nodoushan, Sara Jambarsang and Mohammad Taghi Ghaneian

This paper aims to study the application of high-tolerance and flexible indigenous bacteria and fungi, along with the co-metabolism in recycled paper and cardboard mill (RPCM…

Abstract

Purpose

This paper aims to study the application of high-tolerance and flexible indigenous bacteria and fungi, along with the co-metabolism in recycled paper and cardboard mill (RPCM) wastewater treatment (WWT).

Design/methodology/approach

The molecular characterization of isolated indigenous bacteria and fungi was performed by 16S rRNA and 18S rRNA gene sequencing, respectively. Glucose was used as a cometabolic substrate to enhance the bioremediation process.

Findings

The highest removal efficiency was achieved for both chemical oxygen demand (COD) and color [78% COD and 45% color removal by Pseudomonas aeruginosa RW-2 (MZ603673), as well as approximately 70% COD and 48% color removal by Geotrichum candidum RW-4 (ON024394)]. The corresponding percentages were higher in comparison with the efficiency obtained from the oxidation ditch unit in the full-scale RPCM WWT plant.

Originality/value

Indigenous P. aeruginosa RW-2 and G. candidum RW-4 demonstrated effective capability in RPCM WWT despite the highly toxic and low biodegradable nature, especially with the assistance of glucose.

Details

Pigment & Resin Technology, vol. 53 no. 3
Type: Research Article
ISSN: 0369-9420

Keywords

Open Access
Article
Publication date: 13 April 2023

Salim Ahmed, Khushboo Kumari and Durgeshwer Singh

Petroleum hydrocarbons are naturally occurring flammable fossil fuels used as conventional energy sources. It has carcinogenic, mutagenic properties and is considered a hazardous…

2578

Abstract

Purpose

Petroleum hydrocarbons are naturally occurring flammable fossil fuels used as conventional energy sources. It has carcinogenic, mutagenic properties and is considered a hazardous pollutant. Soil contaminated with petroleum hydrocarbons adversely affects the properties of soil. This paper aim to remove pollutants from the environment is an urgent need of the hour to maintain the proper functioning of soil ecosystems.

Design/methodology/approach

The ability of micro-organisms to degrade petroleum hydrocarbons makes it possible to use these microorganisms to clean the environment from petroleum pollution. For preparing this review, research papers and review articles related to petroleum hydrocarbons degradation by micro-organisms were collected from journals and various search engines.

Findings

Various physical and chemical methods are used for remediation of petroleum hydrocarbons contaminants. However, these methods have several disadvantages. This paper will discuss a novel understanding of petroleum hydrocarbons degradation and how micro-organisms help in petroleum-contaminated soil restoration. Bioremediation is recognized as the most environment-friendly technique for remediation. The research studies demonstrated that bacterial consortium have high biodegradation rate of petroleum hydrocarbons ranging from 83% to 89%.

Social implications

Proper management of petroleum hydrocarbons pollutants from the environment is necessary because of their toxicity effects on human and environmental health.

Originality/value

This paper discussed novel mechanisms adopted by bacteria for biodegradation of petroleum hydrocarbons, aerobic and anaerobic biodegradation pathways, genes and enzymes involved in petroleum hydrocarbons biodegradation.

Details

Arab Gulf Journal of Scientific Research, vol. 42 no. 2
Type: Research Article
ISSN: 1985-9899

Keywords

Content available
Book part
Publication date: 4 December 2020

Abstract

Details

Application of Big Data and Business Analytics
Type: Book
ISBN: 978-1-80043-884-2

Book part
Publication date: 4 December 2020

Nilisha Itankar, Yogesh Patil, Prakash Rao and Viraja Bhat

Heavy metals play a crucial role in the economic development of any nation. Industries utilizing heavy metals, consequently, emanate a large volume of metal-containing liquid…

Abstract

Heavy metals play a crucial role in the economic development of any nation. Industries utilizing heavy metals, consequently, emanate a large volume of metal-containing liquid effluents. Since metals are non-renewable and finite resources, their judicious and sustainable use is the key. Hazardous metal-laden water poses threat to human health and ecology. Apart from metals, these industrial effluents also consist of toxic chemicals. Conventional physical–chemical techniques are not efficient enough as it consumes energy and are, therefore, not cost effective.

It is known that biomaterials namely microorganisms, plants, and agricultural biomass have the competence to bind metals, in some cases, selectively, from aqueous medium. This phenomenon is termed as “metal biosorption.” Biosorption has immense potential of becoming an effective alternative over conventional methods. The authors in the present chapter have used secondary data from their previous research work and attempted to develop few strategic models through their feasibility studies for metal sustainability.

Details

Application of Big Data and Business Analytics
Type: Book
ISBN: 978-1-80043-884-2

Keywords

Article
Publication date: 11 November 2021

Rahul Saxena, Sanjeev Kishore and Vandana Srivastava

The paper attempts to frame the challenge of managing the transition to a sustainable economy by way of a conceptual model consisting of a zero-footprint regulatory regime and a…

Abstract

Purpose

The paper attempts to frame the challenge of managing the transition to a sustainable economy by way of a conceptual model consisting of a zero-footprint regulatory regime and a sustainability fund.

Design/methodology/approach

A conceptual model of the sustainable industrial revolution has been developed based on the learnings from industries such as originators (mining), farming, pharmaceuticals, pesticides and chemicals and long-lasting artefacts against an overall perspective.

Findings

It is suggested to have an institutional structural mechanism in place to ensure that footprint is minimized through recycling including refurbishing, resale or transformation. This includes management of recycling businesses through execution of a zero-waste regulatory regime that will build and use a sustainability fund.

Research limitations/implications

The limitations of the paper are arising out of the topic being an issue of gigantic proportions with immense complexity. An attempt has been made to bring out the inescapability and the imperative of a sustainable industrial revolution.

Practical implications

This paper presents practical aspects such as collusion between trash and recycling businesses, land use and social aspects of criticality of public support. If implemented, the suggested model can make a paradigm shift in the way firms, industry and governments can handle the challenge of sustainability.

Originality/value

The value of this conceptual paper lies in an attempt to extend the learning organization framework to the concept of a regulatory model for sustainability that is not limited to the definition of a firm but stands extended to industries and to the economics, land use and demographics of the planet.

Details

Technological Sustainability, vol. 1 no. 1
Type: Research Article
ISSN: 2754-1312

Keywords

Book part
Publication date: 4 December 2020

Abstract

Details

Application of Big Data and Business Analytics
Type: Book
ISBN: 978-1-80043-884-2

Book part
Publication date: 25 July 2011

Robert W. Herdt and Rebecca Nelson

The products of transgenic technology have captured the attention of enthusiasts and detractors, but transgenics are just one tool of agricultural biotechnology. Other…

Abstract

The products of transgenic technology have captured the attention of enthusiasts and detractors, but transgenics are just one tool of agricultural biotechnology. Other applications enable scientists to understand biodiversity, to track genes through generations in breeding programs, and to move genes among closely related as well as unrelated organisms. These applications all have the potential to lead to substantial productivity gains.

In this chapter we provide an introduction to basic plant genetic concepts, defining molecular markers, transgenic and cisgenic techniques. We briefly summarize the status of commercialized biotechnology applications to agriculture. We consider the likely future commercialization of products like drought tolerant crops, crops designed to improve human nutrition, pharmaceuticals from transgenic plants, biofuels, and crops for environmental remediation. We identify genomic selection as a potentially powerful new technique and conclude with our reflections on the state of agricultural biotechnology.

Research at universities and other public-sector institutions, largely focused on advancing knowledge, has aroused enormous optimism about the promise of these DNA-based technologies. This in turn has led to large private-sector investments on maize, soybean, canola, and cotton, with wide adoption of the research products in about eight countries. Much has been made of the potential of biotechnology to address food needs in the low-income countries, and China, India, and Brazil have large public DNA-based crop variety development efforts. But other lower income developing countries have little capability to use these tools, even the most straightforward marker applications. Ensuring that these and other applications of biotechnology lead to products that are well adapted to local agriculture requires adaptive research capacity that is lacking in the lowest income, most food-insecure nations. We are less optimistic than many others that private research will fund these needs.

1 – 10 of 91