Search results

1 – 10 of over 45000
Article
Publication date: 8 January 2018

Xiao-dong Yu, Lei Geng, Xiao-jun Zheng, Zi-xuan Wang and Xiao-gang Wu

Rotational speed and load-carrying capacity are two mutual coupling factors which affect high precision and stable operation of a hydrostatic thrust bearing. The purpose of this…

Abstract

Purpose

Rotational speed and load-carrying capacity are two mutual coupling factors which affect high precision and stable operation of a hydrostatic thrust bearing. The purpose of this paper is to study reasonable matching relationship between the rotational speed and the load-carrying capacity.

Design/methodology/approach

A mathematical model of relationship between the rotational speed and the load-carrying capacity of the hydrostatic bearing with double-rectangle recess is set up on the basis of the tribology theory and the lubrication theory, and the load and rotational speed characteristics of an oil film temperature field and a pressure field in the hydrostatic bearing are analyzed, reasonable matching relationship between the rotational speed and the load-carrying capacity is deduced and a verification experiment is conducted.

Findings

By increasing the rotational speed, the oil film temperature increases, the average pressure decreases and the load-carrying capacity decreases. By increasing the load-carrying capacity, the oil film temperature and the average pressure increases and the rotational speed decreases; corresponding certain reasonable matching values are available.

Originality/value

The load-carrying capacity can be increased and the rotational speed improved by means of reducing the friction area of the oil recess by using low-viscosity lubricating oil and adding more oil film clearance; but, the stiffness of the hydrostatic bearing decreases.

Article
Publication date: 3 August 2021

Long Liu, Lifeng Wang and Ziwang Xiao

The flexural reinforcement of bridges in-service has been an important research field for a long time. Anchoring steel plate at the bottom of beam is a simple and effective method…

Abstract

Purpose

The flexural reinforcement of bridges in-service has been an important research field for a long time. Anchoring steel plate at the bottom of beam is a simple and effective method to improve its bearing capacity. The purpose of this paper is to explore the influence of anchoring steel plates of different thicknesses on the bearing capacity of hollow slab beam and to judge its working status.

Design/methodology/approach

First, static load experiments are carried out on two in-service RC hollow slab beams; meanwhile, nonlinear finite element models are built to study the bearing capacity of them. The nonlinear material and shear slip effect of studs are considered in the models. Second, the finite element models are verified, and the numerical simulation results are in good agreement with the experimental results. Finally, the finite element models are adopted to carry out the research on the influence of different steel plate thicknesses on the flexural bearing capacity and ductility.

Findings

When steel plates of different thicknesses are adopted to reinforce RC hollow slab beams, the bearing capacity increases with the increase of the steel plate thickness in a certain range. But when the steel plate thickness reaches a certain level, bearing capacity is no longer influenced. The displacement ductility coefficient decreases with the increase of steel plate thickness.

Originality/value

Based on experimental study, this paper makes an extrapolation analysis of the bearing capacity of hollow slab beams reinforced with steel plates of different thicknesses through finite element simulation and discusses the influence on ductility. This method not only ensures the accuracy of bearing capacity evaluation but also does not need many samples, which is economical to a certain extent. The research results provide a basis for the reinforcement design of similar bridges.

Details

International Journal of Structural Integrity, vol. 12 no. 4
Type: Research Article
ISSN: 1757-9864

Keywords

Article
Publication date: 7 October 2013

Ludwik Kania and Marek Krynke

The purpose of this paper is to discuss the calculation problem of the real carrying capacity of slewing bearings. The selection of slewing bearing to heavy-duty machine according…

Abstract

Purpose

The purpose of this paper is to discuss the calculation problem of the real carrying capacity of slewing bearings. The selection of slewing bearing to heavy-duty machine according to catalogue carrying capacity and also according to locally determined real carrying capacity is insufficient and it can be the cause of the damage of machine during exploitation.

Design/methodology/approach

The concepts of the local, total and general capacities is defined. The general capacity is a logical product of the local capacities. It is particularly useful in an analysis of slewing bearings incorporated into machines with complex structures. The FEM is applied in computations. The formation method of the mathematical model of a bearing is presented.

Findings

The computations of the local capacities and general capacity of a bearing for the limiting load of the bearing traces and the limiting tension of the bolts fastening the bearing were carried out. Considerations were illustrated by an example of the bearing of a mobile crane.

Practical implications

The paper presented in the methodology of the calculation of general bearing carrying capacity and the obtained results of calculations can be used already by designers of bearings and machine engines to elimination of the potential damages of machine on the stage of projecting.

Originality/value

The general capacity of a bearing into machines with complex and irregulars structure is considerably lower than the bearing catalogue capacity and then the local teal capacity. The reasons for the differences between the catalogue capacity and the general capacity of slewing bearings were given.

Details

Engineering Computations, vol. 30 no. 7
Type: Research Article
ISSN: 0264-4401

Keywords

Article
Publication date: 8 June 2015

Hui Zhang, Guangneng Dong, Meng Hua, Feifei Guo and Kwai Sang Chin

– The main purpose of this paper is to understand and model the hydrodynamic influence of surface textures on journal bearings.

Abstract

Purpose

The main purpose of this paper is to understand and model the hydrodynamic influence of surface textures on journal bearings.

Design/methodology/approach

In the model, a rectangular array of circle dimples is used to modify the film thickness expression. In full film and cavitation regions, classical Reynolds equation and Reynolds boundary condition are used as the governing equations, respectively. By setting high load bearing capacity as the main optimal goal, the influence of textures on tribological characteristics is studied to get the optimal distribution and parameters of textures.

Findings

The results suggest that the load bearing capacity of a journal bearing may be improved through appropriate arrangement of textures partially covering its sleeve. The reduction of the cavitation area may also be achieved by arranging the textures in divergent region. With a high density distribution of textures which have step depths varying linearly along the circumferential direction of the bearing, the load bearing capacity enhancement seems to give good performance. Comparing with smooth bearing, the load bearing capacity enhancement of such textures is about 56.1 per cent, although the influence of texture diameters for the same area density seems insignificant.

Originality/value

The paper shows how surface textures can be designed on journal bearing to improve its tribological performances.

Details

Industrial Lubrication and Tribology, vol. 67 no. 4
Type: Research Article
ISSN: 0036-8792

Keywords

Article
Publication date: 6 November 2019

Nilesh D. Hingawe and Skylab P. Bhore

The purpose of this study is to improve the tribological performance of meso scale air journal bearing by adopting texture on the bearing surface.

Abstract

Purpose

The purpose of this study is to improve the tribological performance of meso scale air journal bearing by adopting texture on the bearing surface.

Design/methodology/approach

The present study is based on numerical analysis. The detailed numerical investigation is carried out using a fluid flow based thin-film model in COMSOL 5.2 software.

Findings

The influence of texture design parameters: geometry (shape, orientation and slender ratio), and position on the tribological performance of meso scale air journal bearing is investigated. It is found that texture shape has a strong influence on the tribological characteristics such as load capacity and friction coefficient of the bearing. Slender texture improves the load capacity, but it has a negligible effect on the reduction of friction coefficient. In contrast, texture orientation is found to be insignificant for both increasing load capacity and decreasing friction coefficient. Furthermore, the maximum improvement in load capacity is obtained for partially textured bearing, but the minimum friction coefficient is achieved for full texturing.

Originality/value

The present study investigates the influence of texture design parameters viz geometry (shape, orientation and slender ratio), and position on the tribological performance of meso scale air journal bearing.

Details

Industrial Lubrication and Tribology, vol. 72 no. 5
Type: Research Article
ISSN: 0036-8792

Keywords

Article
Publication date: 2 November 2022

Dongju Chen, Xuan Zhang, Ri Pan, Kun Sun and Jinwei Fan

This research aims to combine the throttling structure with the elastic element to enhance the load performance of aerostatic radial bearing.

Abstract

Purpose

This research aims to combine the throttling structure with the elastic element to enhance the load performance of aerostatic radial bearing.

Design/methodology/approach

In this research, a fluid–solid coupling model of the elastic throttling structure is established while considering the interaction between the elastic element and the flow field. The effects of elastic element structural parameters on the stiffness and load capacity of aerostatic radial bearing are then researched. Finally, the effect of elastic element modulus on air film load performance and elastic element deformation is analyzed.

Findings

The results indicate that the aerostatic radial bearing with elastic element can significantly improve the load capacity and stiffness when compared to the common aerostatic bearing. By choosing the proper combination of parameters, the load performance can be improved by at least 16%.

Originality/value

The throttling structure of aerostatic bearing is optimized in this work, which significantly enhances the load performance of the aerostatic bearing.

Details

Industrial Lubrication and Tribology, vol. 75 no. 1
Type: Research Article
ISSN: 0036-8792

Keywords

Article
Publication date: 14 January 2022

Fangcheng Xu, Zeda Dong, Jianhua Chu, Haoming Wang and Yongliang Wang

Gas thrust foil bearings (GTFBs) are used to balance the axial load of engines. However, in some working conditions of large axial force, such as the use of single impeller air…

Abstract

Purpose

Gas thrust foil bearings (GTFBs) are used to balance the axial load of engines. However, in some working conditions of large axial force, such as the use of single impeller air compressor, the load capacity of GTFBs is still insufficient. To solve this problem, the load capacity can be improved by increasing the stiffness of bump foil. The purpose of this paper is to explore a scheme to effectively improve the performance of thrust foil bearings. In the paper, the stiffness of bump foil is improved by increasing the thickness of bump foil and using double-layer bump foil.

Design/methodology/approach

The foil deformation of GTFBs supported by three different types of bump foils, the relationship between friction power consumption and external force and the difference of limited load capacity were measured by experimental method.

Findings

The variation of the foil deformation, bearing stiffness, friction power consumption with the external force at different speeds and limited load capacity are obtained. Based on experimental results, the selection scheme of bump foil thickness is obtained.

Originality/value

This paper provides a feasible method for the performance optimization of GTFBs.

Details

Industrial Lubrication and Tribology, vol. 74 no. 1
Type: Research Article
ISSN: 0036-8792

Keywords

Article
Publication date: 1 December 2001

Jerry C.T. Su and K.N. Lie

Investigates rotation effects on hybrid plain journal bearings with various feeding mechanisms, i.e. orifice, capillary and porous feedings. Employs the numerical method of the…

Abstract

Investigates rotation effects on hybrid plain journal bearings with various feeding mechanisms, i.e. orifice, capillary and porous feedings. Employs the numerical method of the finite difference to solve Reynolds equations. Shows that higher speed of rotation induces greater hydrodynamic load capacity, especially with an eccentricity ratio ε > 0.85. The porous and orifice feedings also result in higher load capacity than orifice and capillary feedings when the rotation speeds increase. Also analyses the multi‐array of hole‐entry of orifice and capillary feedings and the results show that the bearings with more arrays of feedings produce higher load capacity at low speed. However, the bearings with fewer arrays of feedings produce higher load capacity at high speeds. In other words, the transition from the hydrostatic to hydrodynamic load capacity of the bearing is significant to hybrid plain journal bearings.

Details

Industrial Lubrication and Tribology, vol. 53 no. 6
Type: Research Article
ISSN: 0036-8792

Keywords

Article
Publication date: 1 October 2003

Jerry C.T. Su, Hsien‐I You and Jing‐Xain Lai

High‐speed gas‐lubricated porous journal bearings up to 200,000 rpm are analyzed numerically. The effects of rotation speed, bearing eccentricity, permeability and thickness of…

Abstract

High‐speed gas‐lubricated porous journal bearings up to 200,000 rpm are analyzed numerically. The effects of rotation speed, bearing eccentricity, permeability and thickness of the porous wall on bearing load capacity and attitude angle are investigated. The adequate initial conditions are necessary to improve the convergence of the numerical solutions for high rotation speeds. The results show that the hydrodynamic effect of high rotation speed is not as significant in gas‐lubricated film as the effect of bearing eccentricity to increase the load capacity. The results also show that the lower permeability and the thicker wall of the porous bearing produce the higher load capacity.

Details

Industrial Lubrication and Tribology, vol. 55 no. 5
Type: Research Article
ISSN: 0036-8792

Keywords

Article
Publication date: 21 July 2023

Dongju Chen, Yueqiang Sun, You Zhao, Kun Sun and Jinwei Fan

The accuracy of the machining process is significantly impacted by the performance of hydrostatic bearings. This paper aims to analyze the influence of micro-textured on the…

Abstract

Purpose

The accuracy of the machining process is significantly impacted by the performance of hydrostatic bearings. This paper aims to analyze the influence of micro-textured on the performance of the hydrostatic bearing, and the performance of the bearing is improved by designing the arrangement of micro-textured.

Design/methodology/approach

Different designs have been used while creating micro-textured bearings. The finite element models of bearing with smooth and micro-textured were established and solved using the computational fluid dynamics method. The arrangement scheme of the micro-textured was evaluated by comparing the influence of the distribution position and arrangement of the micro-textured on the bearing performance.

Findings

To improve the performance of the bearing, the bearing capacity was significantly increased, and the friction coefficient of the bearing was decreased when the micro-textured was distributed in the form of an obtuse angle arrangement in the maximum pressure area of the bearing. The experimental findings validate the analysis method.

Originality/value

In this paper, the effect of irregularly arranged micro-textured on bearing performance is investigated to improve the bearing capacity and lubrication status.

Details

Industrial Lubrication and Tribology, vol. 75 no. 6
Type: Research Article
ISSN: 0036-8792

Keywords

1 – 10 of over 45000