Search results

1 – 10 of over 19000
Article
Publication date: 12 April 2024

Youwei Li and Jian Qu

The purpose of this research is to achieve multi-task autonomous driving by adjusting the network architecture of the model. Meanwhile, after achieving multi-task autonomous

Abstract

Purpose

The purpose of this research is to achieve multi-task autonomous driving by adjusting the network architecture of the model. Meanwhile, after achieving multi-task autonomous driving, the authors found that the trained neural network model performs poorly in untrained scenarios. Therefore, the authors proposed to improve the transfer efficiency of the model for new scenarios through transfer learning.

Design/methodology/approach

First, the authors achieved multi-task autonomous driving by training a model combining convolutional neural network and different structured long short-term memory (LSTM) layers. Second, the authors achieved fast transfer of neural network models in new scenarios by cross-model transfer learning. Finally, the authors combined data collection and data labeling to improve the efficiency of deep learning. Furthermore, the authors verified that the model has good robustness through light and shadow test.

Findings

This research achieved road tracking, real-time acceleration–deceleration, obstacle avoidance and left/right sign recognition. The model proposed by the authors (UniBiCLSTM) outperforms the existing models tested with model cars in terms of autonomous driving performance. Furthermore, the CMTL-UniBiCL-RL model trained by the authors through cross-model transfer learning improves the efficiency of model adaptation to new scenarios. Meanwhile, this research proposed an automatic data annotation method, which can save 1/4 of the time for deep learning.

Originality/value

This research provided novel solutions in the achievement of multi-task autonomous driving and neural network model scenario for transfer learning. The experiment was achieved on a single camera with an embedded chip and a scale model car, which is expected to simplify the hardware for autonomous driving.

Details

Data Technologies and Applications, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 2514-9288

Keywords

Article
Publication date: 2 July 2020

Christian V. Baccarella, Timm F. Wagner, Christian W. Scheiner, Lukas Maier and Kai-Ingo Voigt

Autonomous technologies represent an increasingly important, but at the same time controversial technological field with enormous potential. From a consumer perspective, however…

2848

Abstract

Purpose

Autonomous technologies represent an increasingly important, but at the same time controversial technological field with enormous potential. From a consumer perspective, however, the growing autonomy of technologies might result in a perceived loss of control, which can lead to consumer resistance. Given the practical and theoretical relevance, this research examines antecedents to consumer adoption of autonomous technologies in the context of self-driving cars.

Design/methodology/approach

This article looks through the lens of the technology acceptance model and conducts structural equation modeling.

Findings

The study validates the positive effect of perceived usefulness on behavioral intention to adopt self-driving cars. The results further suggest that individuals with a generally negative attitude toward technologies are afraid that they might not be capable of handling the new technology. Moreover, further mediation analyses reveal that perceived ease of use and perceived usefulness help us to explain the indirect effects of novelty seeking and technology anxiety on adoption intention.

Practical implications

The results imply that users' perceptions of an autonomous technology's usefulness are an important determinant of technology adoption. Adoption barriers could be overcome by emphasizing the usability of the new technology. On the other hand, individuals who enjoy using the old technology may be persuaded by arguments that focus on the usefulness of the new technology rather than its ease of use.

Originality/value

Self-driving automobiles will change our perception of mobility. It is important to understand the mechanisms that drive the adoption of such innovations.

Article
Publication date: 9 July 2018

Eunae Cho and Yoonhyuk Jung

The purpose of this paper is to explore consumers’ understanding of autonomous driving by comparing perceptions of occasional drivers (ODs) and frequent drivers (FDs).

1348

Abstract

Purpose

The purpose of this paper is to explore consumers’ understanding of autonomous driving by comparing perceptions of occasional drivers (ODs) and frequent drivers (FDs).

Design/methodology/approach

Data were gathered through semi-structured interviews with 41 drivers. Their responses were categorized into thematic categories or topics on the basis of content analysis, and the topics were structured based on the core-periphery model. Finally, the authors visualized the structure on a perceptual map by adopting a maximum tree approach.

Findings

Respondents’ understanding of autonomous driving were categorized into 10 topics. There were significant differences in topics and their relationships between ODs and FDs. Findings also show that FD can better detect hazardousness from autonomous driving environments than ODs.

Research limitations/implications

Differently from prior studies’ focus on its technological aspect and some derived benefits, the study examines it from the viewpoint of consumers, who are critical participants in the dissemination of autonomous driving.

Practical implications

The findings suggest that rather than focusing on developing the highest level of autonomous cars, developing in an evolutionary way by adding automated functions to existing cars can be the better strategy to dominate the autonomous vehicle market.

Originality/value

This study is a pioneering work in that it can be an initial empirical work on autonomous driving from the customer standpoint.

Details

Information Technology & People, vol. 31 no. 5
Type: Research Article
ISSN: 0959-3845

Keywords

Content available
Book part
Publication date: 18 April 2018

Andreas Herrmann, Walter Brenner and Rupert Stadler

Abstract

Details

Autonomous Driving
Type: Book
ISBN: 978-1-78714-834-5

Abstract

Details

Autonomous Driving
Type: Book
ISBN: 978-1-78714-834-5

Article
Publication date: 30 August 2022

Milan Zorman, Bojan Žlahtič, Saša Stradovnik and Aleš Hace

Collaborative robotics and autonomous driving are fairly new disciplines, still with a long way to go to achieve goals, set by the research community, manufacturers and users. For…

Abstract

Purpose

Collaborative robotics and autonomous driving are fairly new disciplines, still with a long way to go to achieve goals, set by the research community, manufacturers and users. For technologies like collaborative robotics and autonomous driving, which focus on closing the gap between humans and machines, the physical, psychological and emotional needs of human individuals becoming increasingly important in order to ensure effective and safe human–machine interaction. The authors' goal was to conceptualize ways to combine experience from both fields and transfer artificial intelligence knowledge from one to another. By identifying transferable meta-knowledge, the authors will increase quality of artificial intelligence applications and raise safety and contextual awareness for users and environment in both fields.

Design/methodology/approach

First, the authors presented autonomous driving and collaborative robotics and autonomous driving and collaborative robotics' connection to artificial intelligence. The authors continued with advantages and challenges of both fields and identified potential topics for transferrable practices. Topics were divided into three time slots according to expected research timeline.

Findings

The identified research opportunities seem manageable in the presented timeline. The authors' expectation was that autonomous driving and collaborative robotics will start moving closer in the following years and even merging in some areas like driverless and humanless transport and logistics.

Originality/value

The authors' findings confirm the latest trends in autonomous driving and collaborative robotics and expand them into new research and collaboration opportunities for the next few years. The authors' research proposal focuses on those that should have the most positive impact to safety, complement, optimize and evolve human capabilities and increase productivity in line with social expectations. Transferring meta-knowledge between fields will increase progress and, in some cases, cut some shortcuts in achieving the aforementioned goals.

Details

Kybernetes, vol. 52 no. 9
Type: Research Article
ISSN: 0368-492X

Keywords

Article
Publication date: 27 May 2024

Zhiwei Zhang, Zhe Liu, Yanzi Miao and Xiaoping Ma

This paper aims to develop a robust navigation enhancement framework to handle one of the most urgent needs for real applications of autonomous vehicles nowadays, as these corner…

Abstract

Purpose

This paper aims to develop a robust navigation enhancement framework to handle one of the most urgent needs for real applications of autonomous vehicles nowadays, as these corner cases act as the most commonly occurred risks in potential self-driving accidents.

Design/methodology/approach

In this paper, the main idea is to fully exploit the consistent features among spatio-temporal data and thus detect the anomalies and build residual channels to reconstruct the abnormal information. The authors first develop an anomaly detection algorithm, then followed by a corresponding disturbed information reconstruction network which has strong robustness to address both the nature disturbances and external attacks. Finally, the authors introduce a fully end-to-end resilient navigation performance enhancement framework to improve the driving performance of existing self-driving models under attacks and disturbances.

Findings

Comparison results on CARLA platform and real experiments demonstrate strong resilience of the authors’ approach which enhances the navigation performance under disturbances and attacks.

Originality/value

Reliable and resilient navigation performance under various nature disturbances and even external attacks is one of the most urgent needs for real applications of autonomous vehicles nowadays, as these corner cases act as the most commonly occurred risks in potential self-driving accidents. The information reconstruction approach provides a resilient navigation performance enhancement method for existing self-driving models.

Details

Robotic Intelligence and Automation, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 2754-6969

Keywords

Open Access
Article
Publication date: 13 July 2022

Jiqian Dong, Sikai Chen, Mohammad Miralinaghi, Tiantian Chen and Samuel Labi

Perception has been identified as the main cause underlying most autonomous vehicle related accidents. As the key technology in perception, deep learning (DL) based computer…

Abstract

Purpose

Perception has been identified as the main cause underlying most autonomous vehicle related accidents. As the key technology in perception, deep learning (DL) based computer vision models are generally considered to be black boxes due to poor interpretability. These have exacerbated user distrust and further forestalled their widespread deployment in practical usage. This paper aims to develop explainable DL models for autonomous driving by jointly predicting potential driving actions with corresponding explanations. The explainable DL models can not only boost user trust in autonomy but also serve as a diagnostic approach to identify any model deficiencies or limitations during the system development phase.

Design/methodology/approach

This paper proposes an explainable end-to-end autonomous driving system based on “Transformer,” a state-of-the-art self-attention (SA) based model. The model maps visual features from images collected by onboard cameras to guide potential driving actions with corresponding explanations, and aims to achieve soft attention over the image’s global features.

Findings

The results demonstrate the efficacy of the proposed model as it exhibits superior performance (in terms of correct prediction of actions and explanations) compared to the benchmark model by a significant margin with much lower computational cost on a public data set (BDD-OIA). From the ablation studies, the proposed SA module also outperforms other attention mechanisms in feature fusion and can generate meaningful representations for downstream prediction.

Originality/value

In the contexts of situational awareness and driver assistance, the proposed model can perform as a driving alarm system for both human-driven vehicles and autonomous vehicles because it is capable of quickly understanding/characterizing the environment and identifying any infeasible driving actions. In addition, the extra explanation head of the proposed model provides an extra channel for sanity checks to guarantee that the model learns the ideal causal relationships. This provision is critical in the development of autonomous systems.

Details

Journal of Intelligent and Connected Vehicles, vol. 5 no. 3
Type: Research Article
ISSN: 2399-9802

Keywords

Content available
Book part
Publication date: 18 April 2018

Andreas Herrmann, Walter Brenner and Rupert Stadler

Abstract

Details

Autonomous Driving
Type: Book
ISBN: 978-1-78714-834-5

Book part
Publication date: 4 June 2024

Nikolaos Gavanas

Apart from the challenges related to vehicle technology, the wide-scale deployment of autonomous vehicles (AVs) in cities is linked to unprecedented opportunities and unforeseen…

Abstract

Apart from the challenges related to vehicle technology, the wide-scale deployment of autonomous vehicles (AVs) in cities is linked to unprecedented opportunities and unforeseen impacts. These refer to mobility conditions, infrastructure, land use, wider socio-economic factors, energy use and environmental and climate effects. AVs may affect all these in positive or negative ways, promoting or obstructing the promotion of specific aspects of sustainable urban development. An integrated planning framework is needed to maximise the positive impacts and mitigate the negative ones. The main obstacle in the process of developing such a framework is the absence of empirical data and experience from the implementation of this emerging technology. This chapter outlines the possible impacts of AVs and discusses their uncertainty and trade-offs in relation to sustainable urban development. The categorisation of impacts derives from the priorities of the UN Sustainable Development Goal (SDG) 11: Make cities and human settlements inclusive, safe, resilient, and sustainable. The chapter also highlights the lack of data for the development of an evidence-based planning approach and suggests relevant recommendations to planners. In contrast to the current lack of data, the future abundance of Big Data collected by autonomous road transport systems is discussed in the context of future urban planning purposes. Based on the above, the chapter concludes by stressing the importance of an integrated urban transport planning approach that ensures a positive contribution of AVs to sustainable urban development. Hence, it offers valuable recommendations for policymakers in a range of fields.

Details

Sustainable Automated and Connected Transport
Type: Book
ISBN: 978-1-80382-350-8

Keywords

1 – 10 of over 19000