Search results

1 – 10 of over 1000
Article
Publication date: 26 June 2007

Hiroki Endo and Etsuo Marui

This study seeks to clarify the behavior of ground materials and the grinding mechanism corresponding to the wear of abrasives, in the grinding process by coated abrasives.

Abstract

Purpose

This study seeks to clarify the behavior of ground materials and the grinding mechanism corresponding to the wear of abrasives, in the grinding process by coated abrasives.

Design/methodology/approach

Cemented carbide ball indenters for abrasive grains were used. Cemented carbide ball indenters have a definite shape. Grinding process is carried out using a wear‐testing machine with a reciprocating motion. This is an abrasive wear test. The deformation of the ground material is observed by the measurement of the worn groove and optical microscopic photograph of the worn ground surfaces.

Findings

Grinding process regularly proceeds when indenter diameter is small, that is, abrasive has a good cutting quality. However, when abrasives are gradually worn and the cutting quality becomes worse, a groove formed by grinding process is again filled up by the re‐adhesion of the generated worn debris. So, the grinding process by coated abrasives is impossible.

Research limitations/implications

To clarify the effects of indenter shape and its material on the abrasive wear of the workpiece or grinding process by coated abrasives, the additional experiments are now planned using other indenters having different shape or material in the laboratory.

Practical implications

In this research, interesting phenomena in grinding process by coated abrasives are found. This result is useful for the improvement of coated abrasives.

Originality/value

It is clarified that the grinding process by coated abrasives (that is, the behavior of ground material) can be simulated by this abrasive wear experiment.

Details

Industrial Lubrication and Tribology, vol. 59 no. 4
Type: Research Article
ISSN: 0036-8792

Keywords

Article
Publication date: 22 June 2010

C. Subramanian and S. Senthilvelan

The purpose of this paper is to understand the influence of reinforced fiber length over material‐plastic energy of deformation, clogging, crystallinity, and correlates with the…

1242

Abstract

Purpose

The purpose of this paper is to understand the influence of reinforced fiber length over material‐plastic energy of deformation, clogging, crystallinity, and correlates with the friction and wear behavior of polypropylene (PP) composites under multi‐pass abrasive condition. Also to identify wear mechanisms of glass fiber reinforced PP materials under various abrasive grit sizes and normal loads.

Design/methodology/approach

Multi‐pass abrasive wear tests were performed for unreinforced, short, and long glass fiber reinforced PP (LFPP) on a pin on disc machine under three different normal loads and two different abrasive grit sizes for a constant sliding velocity. Measured wear volume was correlated with the plastic energy of deformation by carrying out a constant load indentation test using servo hydraulic fatigue test system. Clogging behavior of test materials was examined with the aid of online wear measurement and wear morphology. Test materials crystallinity was estimated with the aid of X‐ray diffraction investigation and correlated with abrasive wear performance.

Findings

Fiber reinforcement in a PP material is found to improve the plastic deformation energy and crystallinity which results in improved abrasive resistance of the material. Increase in reinforced fiber length is found to improve the material cohesive energy and hence the wear resistance. Reinforcement is found to alter the material clogging behavior under multi‐pass condition. Fiber reinforcement is found to reduce the material coefficient of friction, and increase in reinforced fiber length further reduces the frictional coefficient.

Research limitations/implications

Friction wear tests using pin on disc equipment is carried out in the present investigation. However, in practice, part geometry may not be always equivalent to simple pin on disc configuration.

Practical implications

The paper's investigation results could help to improve the utilization of LFPP material in many structural applications.

Originality/value

Influence of reinforced fiber length over multi‐pass abrasive wear performance of thermoplastic material, and online wear measurement to substantiate clogging behavior is unique in the present multi‐pass abrasive investigation.

Details

Industrial Lubrication and Tribology, vol. 62 no. 4
Type: Research Article
ISSN: 0036-8792

Keywords

Article
Publication date: 20 October 2023

Ergin Kosa and Ali Gökşenli

Erosion and abrasion are the prominent wear mechanisms reducing the lifetime of machine components. Both wear mechanisms are playing a role meanwhile, generating a synergy…

Abstract

Purpose

Erosion and abrasion are the prominent wear mechanisms reducing the lifetime of machine components. Both wear mechanisms are playing a role meanwhile, generating a synergy, leading to a material removal on the target. The purpose of study is to create a mathematical expression for erosive abrasive wear.

Design/methodology/approach

Many factors such as environmental cases and material character have an influence in erosive abrasive wear. In the work, changes in abrasive size and material hardness have been analyzed. As an abrasive particle, quartz sand has been used. All tests have been done in 20 wt.% slurry. Heat treatment has been applied to different steel specimens (steel grades C15, St 37 and Ck45) to change hardness value, which ranged from 185 to 880 Vickers hardness number.

Findings

After the four-hour test, it is determined that by an increase in abrasive size and decrease in material hardness, wear rate increases. Worn surfaces of the targets have been examined to figure out the wear mechanisms at different conditions under scanning electron microscopy. The results indicate that by an increase in material hardness, the number and diameter of micro-craters on the worn surfaces decrease. The diameters of micro-craters have been about 3–8 µm in hard materials and about 120–140 µm in soft materials.

Research limitations/implications

It is determined that by an increase in abrasive size and decrease in material hardness, wear rate increases. The results indicate that by an increase in material hardness, the number and diameter of micro-craters on the worn surfaces decrease.

Practical implications

The study enables to indicate the dominant factor in worn steel used in mechanical components.

Originality/value

After analyzing the test results, a novel mathematical expression, considering both abrasive size and material hardness, has been developed.

Details

Multidiscipline Modeling in Materials and Structures, vol. 19 no. 6
Type: Research Article
ISSN: 1573-6105

Keywords

Article
Publication date: 13 November 2017

Baochao Zheng, Zhifu Huang, Jiandong Xing, Yiyang Xiao and Fan Xiao

This paper aims to demonstrate the effect of varying chromium content on the wear behavior of white cast iron, to study the interaction relationship between cementite and pearlite…

Abstract

Purpose

This paper aims to demonstrate the effect of varying chromium content on the wear behavior of white cast iron, to study the interaction relationship between cementite and pearlite in white cast iron, while estimating their contribution rate in abrasive wear.

Design/methodology/approach

To study interaction of cementite-pearlite of white cast irons with different chromium content in three-body abrasive wear, three kinds of chromium white cast iron, bulk single-phase cementite, pure pearlite samples and the white cast iron (WCI), were prepared using the melting and casting technique. The so-called pure pearlite samples have the same chemical composition, microstructure and properties as the pearlite matrix in white cast iron.

Findings

Results indicated that the interaction has a negative value. Its absolute value decreased with increasing chromium addition. Meanwhile, a high load resulted in an increased interaction value. The contribution rate of cementite to interaction, which was higher than that of pearlite, increased with increasing chromium addition. This indicated cementite was a main phase. Besides, the reductive size of abrasive has a significant effect on the contribution rate at the high load. These prominent cementite occurred fracture, when small size abrasive indented the matrix. These result in the absence of a protective effect of cementite during wear process. Eventually, the contribution rate of cementite decreased significantly.

Originality/value

This paper demonstrates the effect of varying chromium content on wear behavior of white cast iron, to study the interaction relationship between cementite and pearlite in white cast iron while estimating their contribution rate in abrasive wear.

Details

Industrial Lubrication and Tribology, vol. 69 no. 6
Type: Research Article
ISSN: 0036-8792

Keywords

Article
Publication date: 13 March 2017

N.C. Kaushik and R.N. Rao

The purpose of the present study is to analyze the wear behavior of developed aluminum hybrid composites under high-stress conditions through developed power law and quadratic…

Abstract

Purpose

The purpose of the present study is to analyze the wear behavior of developed aluminum hybrid composites under high-stress conditions through developed power law and quadratic equations.

Design/methodology/approach

The abrasive wear behavior of Al–Mg–Si (Al 6082) alloy reinforced with hard silicon carbide (SiC) and soft graphite (Gr) particulates fabricated by stir casting route was studied at loads of 5-15 N, sliding distance of 75 m and abrasive grit size of 100-200 μm. The power law and quadratic equations were developed to understand the wear behavior with respect to the load applied and the abrasive grit size. The worn surfaces of the test specimens and grit papers were examined under scanning electron microscope.

Findings

The density and hardness of the hybrid composites decreased when compared to Al–SiC composites, whereas the wear properties improved because of the presence of Gr. There was further improvement in the wear properties of the materials because of T6 heat treatment. The change in abrasive wear mechanism was observed at a grit size of 125 μm when traversed from alloy to hybrid composite as indicated in terms of exponents in the power law equation. The worn surfaces of hybrid composite pins were comparable with those of alloy pins.

Practical implications

In the automobile sector, components like cylinder liner, piston, crankshafts, brake drums, etc. also undergo abrasive wear along with sliding against the counter surface in working conditions.

Originality/value

The results prove that better wear resistance was obtained under the abrasion condition.

Details

Industrial Lubrication and Tribology, vol. 69 no. 2
Type: Research Article
ISSN: 0036-8792

Keywords

Article
Publication date: 1 October 1971

P.L. HURRICKS

WEAR is one of the major ways by which a material part ceases to be useful, others are corrosion, obsolescence and breakage. It is the consequence of relative motion and in…

Abstract

WEAR is one of the major ways by which a material part ceases to be useful, others are corrosion, obsolescence and breakage. It is the consequence of relative motion and in industrial plant and equipment it has always been accepted as inevitable that it should lead to heavy expenditure for maintenance and replacement. Historically, wear is a well established fact, yet our knowledge of the technology is extremely limited. It has become a way of life that we compensate for wear when it no longer can be tolerated, yet need this be so? This article examines the problem, and primarily from the unlubricated point of view, describes the various types of wear and the way material selection or modification can be used to limit wear.

Details

Industrial Lubrication and Tribology, vol. 23 no. 10
Type: Research Article
ISSN: 0036-8792

Article
Publication date: 8 July 2019

Lei Dong, Xiaoyu Zhang, Kun Liu, Xiaojun Liu, Ruiming Shi, Junyuan Wang and Feng Liu

The purpose of this paper is to investigate the tribological properties of the WC/TiC-Co substrate under different loading conditions under three impact abrasive wear conditions.

Abstract

Purpose

The purpose of this paper is to investigate the tribological properties of the WC/TiC-Co substrate under different loading conditions under three impact abrasive wear conditions.

Design/methodology/approach

The three body collisional wear behavior of Co alloy with WC and TiC at three impact energy was studied from 1 to 3 J. Meanwhile, the microstructure, hardness, phase transformation and wear behavior of these specimens were investigated by scanning electron microscopy, Rockwell hardness (HRV), EDS and impact wear tester. The resulting wear rate was quantified by electronic balance measurements under different pressures.

Findings

The specific wear rate increases with the increase of the nonlinearity of the impact energy and the increase in the content of WC or TiC. The effect of TiC on wear rate is greater than that of WC, but the hardness is smaller. The wear characteristics of the samples are mainly characterized by three kinds of behavior, such as cutting wear, abrasive wear and strain fatigue wear. The WC-Co with fewer TiC samples suffered heavier abrasive wear than the more TiC samples under both low and high impact energy and underwent fewer strain fatigue wears under high impact energy.

Originality/value

The experimental results show that the wear resistance of the Co alloy is improved effectively and the excellent impact wear performance is achieved. The results can be used in cutting tools such as coal mine cutting machines or other fields.

Details

Industrial Lubrication and Tribology, vol. 71 no. 7
Type: Research Article
ISSN: 0036-8792

Keywords

Article
Publication date: 30 January 2024

Ravikantha Prabhu, Sharun Mendonca, Pavana Kumara Bellairu, Rudolf Charles DSouza and Thirumaleshwara Bhat

The purpose of this study is to investigate the impact of titanium oxide (TiO2) filler on the abrasive wear properties of bamboo fiber reinforced epoxy composites (BFRCs) using a…

Abstract

Purpose

The purpose of this study is to investigate the impact of titanium oxide (TiO2) filler on the abrasive wear properties of bamboo fiber reinforced epoxy composites (BFRCs) using a Taguchi approach. The study aims to enhance the abrasive wear resistance of these composites by introducing TiO2 filler as a potential reinforcement, thus contributing to the development of sustainable and environmentally friendly materials.

Design/methodology/approach

This study focuses on the fabrication of epoxy/bamboo composites infused with TiO2 particles within the Wt.% range of 0–8 Wt.% using hand layup techniques. The resulting composites were subjected to wear testing according to ASTM G99-05 standards. Statistical analysis of the wear results was carried out using the Taguchi design of experiments (DOE). Additionally, an analysis of variance (ANOVA) was used to determine the influential control factors impacting the specific wear rate (SWR) and coefficient of friction (COF).

Findings

The study illuminates how integrating TiO2 filler enhances abrasive wear in epoxy/bamboo composites. Statistical analysis of SWR highlights abrasive grit size (grit) as the most influential factor, followed by normal load, Wt.% of TiO2 and sliding distance. Analysis of the COF identifies normal load as the primary influential factor, followed by grit, Wt.% of TiO2 and sliding distance. The Taguchi predictive model closely aligns with experimental results, validating its reliability. The morphological study revealed significant differences between the unfilled and TiO2-filled composites. The inclusion of TiO2 improved wear resistance, as evidenced by reduced surface damage and wear debris.

Originality/value

This research paper aims to integrate TiO2 filler and bamboo fibers to create an innovative hybrid composite material. TiO2 micro and nanoparticles show promise as filler materials, contributing to improved tribological properties of epoxy composites. The utilization of Taguchi’s DOE and ANOVA for statistical analysis provides valuable guidance for academic researchers and practitioners in optimizing control variables, especially in the context of natural fiber reinforced composites.

Details

World Journal of Engineering, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 1708-5284

Keywords

Article
Publication date: 19 October 2023

Sara Pope and Robert L. Jackson

The purpose of this paper is to use a wear test to determine the effect of sand on the wear rates of materials typically used in aerospace applications. Once a repeatable wear

Abstract

Purpose

The purpose of this paper is to use a wear test to determine the effect of sand on the wear rates of materials typically used in aerospace applications. Once a repeatable wear test has been established, it can be used to test any combination of materials or coatings. The effectiveness of several different test methods will also be evaluated, including the sample height, surface roughness and mass difference. In addition, the current work will observe the differences between applying sand before the samples are brought into contact or after. The wear rates obtained from these tests could also be used to predict the wear of other components in similar abrasive particulate environments.

Design/methodology/approach

A modified block-on-flat wear test of anodized aluminum on hard coat anodized aluminum was used to study this. The experiments were performed with and without sand to study the effects of the sand. Two methods of adding sand were also evaluated. Weighing and profilometry were used to study the differences between the tests.

Findings

Wear rates have been calculated based on both the change in the masses of the samples and the change in the height between the upper and lower samples over the course of each test. The wear rates from the change in the masses are repeatable with and without sand, but the results for the change in height show no repeatability without sand. In addition, only in the presence of sand do the trends for the two methods agree. The wear rate was found to be non-linear as a function of load and therefore not in agreement with Archard’s Wear Law. The wear rate also increased significantly when sand was present in the contact for the duration of the test. The sand appears to change the wear mechanism from an adhesive to an abrasive mechanism. Black wear particles formed both when there was sand and when there was not sand. The source of these particles has been investigated but not determined.

Originality/value

This work has not been previously published and is the original work of the authors.

Details

Industrial Lubrication and Tribology, vol. 75 no. 9
Type: Research Article
ISSN: 0036-8792

Keywords

Article
Publication date: 12 March 2018

Deepak Mehra, Manas Mohan Mahapatra and Suraj Prakash Harsha

The purpose of this study is to increase the wear resistance of Mg alloy by adding hard ceramic particles to it. The inclusion of hard ceramic particles further strengthen the Mg…

Abstract

Purpose

The purpose of this study is to increase the wear resistance of Mg alloy by adding hard ceramic particles to it. The inclusion of hard ceramic particles further strengthen the Mg alloy, resulting in higher wear resistance. Mg alloys containing Zn, rare earth and Zr exhibit high specific strength and excellent creep resistance, making them suitable for aerospace components such as aircraft gearboxes and generator housings.

Design/methodology/approach

In the present study, composites have been produced in situ by using RZ5 mg alloy as matrix and TiC as reinforcement by self-propagating high-temperature synthesis technique. The abrasive wear behavior of RZ5 Mg alloy matrix reinforced with TiC particulates has also been examined. The pin-on-disc apparatus has been used for the tests. The abrasive paper is used as a counter body, and the results are obtained by changing sliding distance and applied load.

Findings

A notable enhancement in the wear resistance and mechanical properties of tested composite has been observed as compared to the RZ5 Mg alloy as a matrix. There is a uniform increment in the change in weight loss of RZ5-TiC composite with increasing sliding distance and applied load, but it decreases with increasing TiC content. The coefficient of friction (µ) also decreases uniformly with an increase in the reinforcement of TiC, but it decreases with an increase in applied load and sliding distance. The investigation of the worn composite, which determines dominant wear mechanisms as abrasion and plowing grooves on tested samples, has been done using field emission scanning electron microscopy.

Originality/value

The current manuscript provides a detailed abrasive wear analysis of RZ5-TiC composite by using different wear parameters. Specifically, extensive experimental data have been provided for RZ5-TiC composite. The effects of parameters such as applied load, sliding distance and Wt.% of TiC on the weight loss and coefficient of friction of the composites have been analyzed and discussed thoroughly.

Details

Industrial Lubrication and Tribology, vol. 70 no. 2
Type: Research Article
ISSN: 0036-8792

Keywords

1 – 10 of over 1000