Search results

1 – 10 of 525
Article
Publication date: 1 June 2005

A. Nakayama and F. Kuwahara

To introduce a novel numerical calculation procedure for periodically fully developed heat and fluid flow, which can treat three‐dimensional velocity and temperature fields, using…

Abstract

Purpose

To introduce a novel numerical calculation procedure for periodically fully developed heat and fluid flow, which can treat three‐dimensional velocity and temperature fields, using a two‐dimensional storage.

Design/methodology/approach

The three‐dimensional Navier‐Stokes equation and energy equation have been transformed into quasi‐three‐dimensional forms. An appropriate set of explicit periodic boundary conditions have been obtained for thermally fully developed flow through a general three‐dimensional periodic structure, exploiting the volume averaging theory.

Findings

The proposed numerical procedure has been found inexpensive and efficient. Its validity has been proved by comparing the results obtained for a bank of long cylinders in yaw against available experimental data.

Originality/value

Since no explicit sets of periodic boundary conditions of this kind have been reported before, they will be exploited by researchers and practitioners interested in efficient numerical computations of three‐dimensional periodic heat and fluid flows.

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. 15 no. 4
Type: Research Article
ISSN: 0961-5539

Keywords

Article
Publication date: 1 December 2001

A. Nakayama and K. Miyashita

An Unsteady Reynolds‐Averaged Navier‐Stokes (URANS) equation method has been applied to compute the flow over two‐dimensional smooth topography and compared with conventional RANS…

Abstract

An Unsteady Reynolds‐Averaged Navier‐Stokes (URANS) equation method has been applied to compute the flow over two‐dimensional smooth topography and compared with conventional RANS and large‐eddy simulation (LES) results. The URANS calculation with sufficient grid resolution near solid surface and an appropriate near‐wall model has been shown to simulate much of the large‐scale unsteadiness and some of the turbulent motion for flows with and without separation. Although the results with unadjusted model constants do not show an overwhelming improvement over a standard two‐equation model, it is demonstrated that it may be improved and, more importantly, can be generalized to a new simulation technique by refining the model, considering such factors as grid‐dependent length scales and by making a three‐dimensional calculation.

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. 11 no. 8
Type: Research Article
ISSN: 0961-5539

Keywords

Article
Publication date: 1 December 2005

A. Nakayama, F. Kuwahara and Y. Kamiya

To introduce an efficient two‐dimensional numerical procedure for a three‐dimensional internal flow through a complex passage with a small depth, in which the viscous effects from…

Abstract

Purpose

To introduce an efficient two‐dimensional numerical procedure for a three‐dimensional internal flow through a complex passage with a small depth, in which the viscous effects from upper and lower walls are significant.

Design/methodology/approach

A set of two‐dimensional governing equations has been derived by integrating the full three‐dimensional Navier‐Stokes equations over the depth. Then, this set of the governing equations has been discretized using a finite volume method. Simple algorithm and quick scheme are used to solve the resulting discretized equations.

Findings

A numerical experiment conducted to investigate the oscillation mechanism of a feedback fluidic oscillator reveals that the feedback passage plays an important role of transmitting the pressure rise to the control port, which triggers the jet stream to deflect towards the opposite side wall in the reaction region. Comparison of the prediction and experiment substantiates the validity of the present numerical procedure.

Originality/value

The two‐dimensional numerical procedure, proposed in this study, will be used by researchers and practitioners to investigate various kinds of complex passages with a small depth. Especially, those who are interested in fluidic devices may find it extremely convenient to conduct numerical experiments.

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. 15 no. 8
Type: Research Article
ISSN: 0961-5539

Keywords

Article
Publication date: 20 February 2007

Ali J. Chamkha and Jasem M. Al‐Humoud

To consider simultaneous heat and mass transfer by mixed convection for a non‐Newtonian power‐law fluid from a permeable vertical plate embedded in a fluid‐saturated porous medium…

Abstract

Purpose

To consider simultaneous heat and mass transfer by mixed convection for a non‐Newtonian power‐law fluid from a permeable vertical plate embedded in a fluid‐saturated porous medium in the presence of suction or injection and heat generation or absorption effects.

Design/methodology/approach

The problem is formulated in terms of non‐similar equations. These equations are solved numerically by an efficient implicit, iterative, finite‐difference method.

Findings

It was found that as the buoyancy ratio was increased, both the local Nusselt and Sherwood numbers increased in the whole range of free and mixed convection regime while they remained constant for the forced‐convection regime. However, they decreased and then increased forming dips as the mixed‐convection parameter was increased from the free‐convection limit to the forced‐convection limit for both Newtonian and dilatant fluid situations.

Research limitations/implications

The problem is limited to slow flow of non‐Newtonian power‐law fluids in porous media. Future research may consider inertia effects of porous media for relatively higher velocity flows.

Practical implications

A very useful source of information for researchers on the subject of non‐Newtonian fluids in porous media.

Originality/value

This paper illustrates simultaneous heat and mass transfer in porous media for power‐law fluids with heat generation or absorption effects.

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. 17 no. 2
Type: Research Article
ISSN: 0961-5539

Keywords

Article
Publication date: 11 October 2018

Safa Sabet, Moghtada Mobedi, Murat Barisik and Akira Nakayama

Fluid flow and heat transfer in a dual scale porous media is investigated to determine the interfacial convective heat transfer coefficient, numerically. The studied porous media…

Abstract

Purpose

Fluid flow and heat transfer in a dual scale porous media is investigated to determine the interfacial convective heat transfer coefficient, numerically. The studied porous media is a periodic dual scale porous media. It consists of the square rods which are permeable in an aligned arrangement. It is aimed to observe the enhancement of heat transfer through the porous media, which is important for thermal designers, by inserting intra-pores into the square rods. A special attention is given to the roles of size and number of intra-pores on the heat transfer enhancement through the dual scale porous media. The role of intra-pores on the pressure drop of air flow through porous media is also investigated by calculation and comparison of the friction coefficient.

Design/methodology/approach

To calculate the interfacial convective heat transfer coefficient, the governing equations which are continuity, momentum and energy equations are solved to determine velocity, pressure and temperature fields. As the dual scale porous structure is periodic, a representative elementary volume is generated, and the governing equations are numerically solved for the selected representative volume. By using the obtained velocity, pressure and temperature fields and using volume average definition, the volume average of aforementioned parameters is calculated and upscaled. Then, the interfacial convective heat transfer coefficient and the friction coefficient is numerically determined. The interparticle porosity is changed between 0.4 and 0.75, while the intraparticle varies between 0.2 and 0.75 to explore the effect of intra-pore on heat transfer enhancement.

Findings

The obtained Nusselt number values are compared with corresponding mono-scale porous media, and it is found that heat transfer through a porous medium can be enhanced threefold (without the increase of pressure drop) by inserting intraparticle pores in flow direction. For the porous media with low values of interparticle porosity (i.e. = 0.4), an optimum intraparticle porosity exists for which the highest heat transfer enhancement can be achieved. This value was found around 0.3 when the interparticle porosity was 0.4.

Research limitations/implications

The results of the study are interesting, especially from heat transfer enhancement point of view. However, further studies are required. For instance, studies should be performed to analyze the rate of the heat transfer enhancement for different shapes and arrangements of particles and a wider range of porosity. The other important parameter influencing heat transfer enhancement is the direction of pores. In the present study, the intraparticle pores are in flow direction; hence, the enhancement rate of heat transfer for different directions of pores must also be investigated.

Practical implications

The application of dual scale porous media is widely faced in daily life, nature and industry. The flowing of a fluid through a fiber mat, woven fiber bundles, multifilament textile fibers, oil filters and fractured porous media are some examples for the application of the heat and fluid flow through a dual scale porous media. Heat transfer enhancement.

Social implications

The enhancement of heat transfer is a significant topic that gained the attention of researchers in recent years. The importance of topic increases day-by-day because of further demands for downsizing of thermal equipment and heat recovery devices. The aim of thermal designers is to enhance heat transfer rate in thermal devices and to reduce their volume (and/or weight in some applications) by using lower mechanical power for cooling.

Originality/value

The present study might be the first study on determination of thermal transport properties of dual scale porous media yielded interesting results such as considerable enhancement of heat transfer by using proper intraparticle channels in a porous medium.

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. 28 no. 11
Type: Research Article
ISSN: 0961-5539

Keywords

Article
Publication date: 1 September 1998

M.K. Alkam, M.A. Al‐Nimr and Z. Mousa

This study aims to numerically investigate the transient forced convection of non‐Newtonian fluid in the entrance region of porous concentric annuli. The hydrodynamic behavior of…

Abstract

This study aims to numerically investigate the transient forced convection of non‐Newtonian fluid in the entrance region of porous concentric annuli. The hydrodynamic behavior of the flow is assumed to be steady and it is modeled using the non‐Darcian flow and the power law models. The transients in the thermal behaviors result from sudden changes in the boundary temperatures. The effects of different fluid flow and solid matrix parameters on the thermal behavior of the annular are investigated.

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. 8 no. 6
Type: Research Article
ISSN: 0961-5539

Keywords

Article
Publication date: 14 October 2022

R.S. Ransing

This study aims to understand the difference between irreversibility in heat and work transfer processes. It also aims to explain that Helmholtz or Gibbs energy does not represent…

Abstract

Purpose

This study aims to understand the difference between irreversibility in heat and work transfer processes. It also aims to explain that Helmholtz or Gibbs energy does not represent “free” energy but is a measure of loss of Carnot (reversible) work opportunity.

Design/methodology/approach

The entropy of mass is described as the net temperature-standardised heat transfer to mass under ideal conditions measured from a datum value. An expression for the “irreversibility” is derived in terms of work loss (Wloss) in a work transfer process, unaccounted heat dissipation (Qloss) in a heat transfer process and loss of net Carnot work (CWnet) opportunity resulting from spontaneous heat transfer across a finite temperature difference during the process. The thermal irreversibility is attributed to not exploiting the capability for extracting work by interposing a combination of Carnot engine(s) and/or Carnot heat pump(s) that exchanges heat with the surrounding and operates across the finite temperature difference.

Findings

It is shown, with an example, how the contribution of thermal irreversibility, in estimating reversible input work, amounts to a loss of an opportunity to generate the net work output. The opportunity is created by exchanging heat with surroundings whilst transferring the same amount of heat across finite temperature difference. An entropy change is determined with a numerical simulation, including calculation of local entropy generation values, and results are compared with estimates based on an analytical expression.

Originality/value

A new interpretation of entropy combined with an enhanced mental image of a combination of Carnot engine(s) and/or Carnot heat pump(s) is used to quantify thermal irreversibility.

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. 33 no. 2
Type: Research Article
ISSN: 0961-5539

Keywords

Article
Publication date: 1 August 1999

Rama Subba Reddy Gorla and Mahesh Kumari

A nonsimilar boundary layer analysis is presented for the problem of mixed convection in power‐law type non‐Newtonian fluids along a vertical wedge with variable wall temperature…

Abstract

A nonsimilar boundary layer analysis is presented for the problem of mixed convection in power‐law type non‐Newtonian fluids along a vertical wedge with variable wall temperature distribution. The mixed convection regime is divided into two regions, namely, the forced convection dominated regime and the free convection dominated regime. The two solutions are matched. Numerical results are presented for the details of the velocity and temperature fields. A discussion is provided for the effect of viscosity index on the surface heat transfer rate.

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. 9 no. 5
Type: Research Article
ISSN: 0961-5539

Keywords

Article
Publication date: 4 December 2017

Hasan Celik, Moghtada Mobedi, Oronzio Manca and Unver Ozkol

The purpose of this study is to determine interfacial convective heat transfer coefficient numerically, for a porous media consisting of square blocks in inline arrangement under…

Abstract

Purpose

The purpose of this study is to determine interfacial convective heat transfer coefficient numerically, for a porous media consisting of square blocks in inline arrangement under mixed convection heat transfer.

Design/methodology/approach

The continuity, momentum and energy equations are solved in dimensionless form for a representative elementary volume of porous media, numerically. The velocity and temperature fields for different values of porosity, Ri and Re numbers are obtained. The study is performed for the range of Ri number from 0.01 to 10, Re number from 100 to 500 and porosity value from 0.51 to 0.96. Based on the obtained results, the value of the interfacial convective heat transfer coefficient is calculated by using volume average method.

Findings

It was found that at low porosities (such as 0.51), the interfacial Nusselt number does not considerably change with Ri and Re numbers. However, for porous media with high Ri number and porosity (such as 10 and 0.51, respectively), secondary flows occur in the middle of the channel between rods improving heat transfer between solid and fluid, considerably. It is shown that the available correlations of interfacial heat transfer coefficient suggested for forced convection can be used for mixed convection for the porous media with low porosity (such as 0.51) or for the flow with low Ri number (such as 0.01).

Originality/value

To the best of the authors’ knowledge, there is no study on determination of interfacial convective heat transfer coefficient for mixed convection in porous media in literature. The present study might be the first study providing an accurate idea on the range of this important parameter, which will be useful particularly for researchers who study on mixed convection heat transfer in porous media, macroscopically.

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. 27 no. 12
Type: Research Article
ISSN: 0961-5539

Keywords

Article
Publication date: 1 November 2003

N. Massarotti, P. Nithiarasu and A. Carotenuto

In this paper, microscopic and macroscopic approaches to the solution of natural convection in enclosures filled with fluid saturated porous media are investigated. At the…

Abstract

In this paper, microscopic and macroscopic approaches to the solution of natural convection in enclosures filled with fluid saturated porous media are investigated. At the microscopic level, the porous medium is represented by different assemblies of cylinders and the Navier‐Stokes equations are assumed to govern the flow. To represent the flow in a macroscopic porous medium approach, the generalised flow model is employed. The characteristic based split scheme is used to solve the conservation equations of both approaches. In addition to the comparison between microscopic and macroscopic approaches of fluid saturated porous enclosures, cavities with interface between fluid saturated porous medium and single phase fluid are also investigated.

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. 13 no. 7
Type: Research Article
ISSN: 0961-5539

Keywords

1 – 10 of 525