Search results

1 – 10 of over 6000
Article
Publication date: 1 July 1996

J.G. WEI and W.Q. TAO

A numerical study of natural convection of air in a vertical annulus has been conducted, where the inner wall is heated with constant heat flux at its inner side, the outer wall…

Abstract

A numerical study of natural convection of air in a vertical annulus has been conducted, where the inner wall is heated with constant heat flux at its inner side, the outer wall of the annulus being maintained at constant temperature, and the top and bottom plates are assumed to be insulated. The cases of radius ratio K = 3, aspect ratio A = 10∼30, and Ra* = 103∼1.7 × 107 have been simulated. Both axial conduction and surface radiation are taken into account to reveal their effects on the distributions of inner wall temperature and local Nusselt number. Emphasis is on the comparison between the numerical results and the relevant experimental data, and the comparison between numerical solutions with and without considering the surface radiation. The numerical results of heat transfer are found to be in good agreement with the corresponding experimental results in the literature. The dependence of average relative conductivity on aspect ratio and the effect of imperfection in top and bottom insulation on the inner wall temperature are also discussed.

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. 6 no. 7
Type: Research Article
ISSN: 0961-5539

Keywords

Article
Publication date: 1 November 2021

Hamed Jafari, Mohammad Goharkhah and Alireza Mahdavi Nejad

This paper aims to analyze the accuracy of the single and two-phase numerical methods for calculation of ferrofluid convective heat transfer in the presence of a magnetic field…

Abstract

Purpose

This paper aims to analyze the accuracy of the single and two-phase numerical methods for calculation of ferrofluid convective heat transfer in the presence of a magnetic field. The findings of current study are compared with previous single-phase numerical results and experimental data. Accordingly, the effect of various parameters including nanoparticles concentration, Reynolds number and magnetic field strength on the performance of the single and two-phase models are evaluated.

Design/methodology/approach

A two-phase mixture numerical study is carried out to investigate the influence of four U-shaped electromagnets on the hydrodynamic and thermal characteristics of Fe3O4/Water ferrofluid flowing inside a heated channel.

Findings

It is observed that the applied external magnetic field signifies the convective heat transfer from the channel surface, despite local reduction at a few locations. The maximum heat transfer enhancement is predicted as 23% and 25% using single and two-phase models, respectively. The difference between the results of the two models is mainly attributed to the slip velocity effect which is accounted for in the two-phase model. The magnetic field gradient leads to a significant increase in the slip velocity which in turn causes a slight difference in velocity and temperature profiles obtained by the single and two-phase models in the magnetic field region. According to percentage error calculation, the two-phase method is generally more accurate than the single-phase method. However, the percentage error of both models improves by decreasing either magnetic field intensity or Reynolds number.

Originality/value

For the first time in the literature, to the best of the authors’ knowledge, the current work analyzes the accuracy of the single and two phase numerical methods for calculation of ferrofluid convective heat transfer in the presence of a magnetic field.

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. 32 no. 7
Type: Research Article
ISSN: 0961-5539

Keywords

Article
Publication date: 19 June 2007

Sebahattin Ünalan, Selahaddin Orhan Akansu and Ahmet Konca

Re<95,000 based on hydraulic diameter, heat transfer and turbulent flow through a rectangular‐sectioned 90° bend was investigated numerically and experimentally. To develop…

1106

Abstract

Purpose

Re<95,000 based on hydraulic diameter, heat transfer and turbulent flow through a rectangular‐sectioned 90° bend was investigated numerically and experimentally. To develop turbulence level, square prism and cylindrical obstacles was placed in the center of the bend.

Design/methodology/approach

For heat transfer, uniform heat flux of 5,000 W/m2 from bend surfaces is assumed. Numerical analysis was realized for both the turbulent flow and heat transfer. For numerical study, FLUENT 6.1.22 code, RSM turbulence model, hybrid hexahedral‐tetrahedral cell structures and uniform inlet velocity assumption were selected. For the pressure distribution in the bend and velocity profile at the outlet of the bend, the experiments was carried out by means of manometers with ethyl alcohol, Mano‐air 500 Equipment and pitot‐static tube.

Findings

There was a high level of validation obtained between the numerical and the experimental results. Thereby, the mentioned numerical calculation method can be used most engineering applications. For Re>20,000, the square prism obstacles provide higher turbulence level and more favorable heat transfer than cylindrical obstacles. For Re<20,000, the obstacle use would not require for enhanced heat transfer aim. The obstacle in the bend cause considerably pressure drop in the bend.

Originality/value

The turbulent flow in the bend without obstacle has been numerically investigated by various turbulence models with the non‐refined mesh structure and various wall functions. For numerical solution of the turbulence flows and the heat transfer in the rectangular bend with obstacles, the FLUENT code and RSM turbulence model with enhanced wall functions are selected. In order to adapt the cell size and number to the turbulent flow the mesh structure was refined over curvature of turbulence dissipation rate in the bend.

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. 17 no. 5
Type: Research Article
ISSN: 0961-5539

Keywords

Article
Publication date: 1 September 1995

F. Escanes, C. D. Pérez‐Segarra and A. Oliva

This paper deals with a numerical simulation of the thermal andfluid‐dynamic behaviour of double‐pipe condensers and evaporators. Thegoverning equations of the fluid flow…

Abstract

This paper deals with a numerical simulation of the thermal and fluid‐dynamic behaviour of double‐pipe condensers and evaporators. The governing equations of the fluid flow (continuity, momentum and energy) in both the tube (evaporating or condensing flow) and the annulus (single‐phase flow), together with the energy equation in the tube wall, are solved iteratively in a segregated manner using a one‐dimensional, transient formulation, based on an implicit step by step numerical scheme in the zones with fluid flow (tube and annulus), and an implicit central difference numerical scheme in the tube wall, solved by means of the Tri‐Diagonal Matrix Algorithm (TDMA). This formulation requires the use of empirical information for the evaluation of convective heat transfer, shear stress and void fraction. Two criteria to calculate the location of the points of transition between single‐phase and two‐phase flow are tested. An analysis of the different parameters used in the discretization is made. Some illustrative results corresponding to the solution of a condenser and an evaporator using two different working fluids (R–12 and R–134a) are presented.

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. 5 no. 9
Type: Research Article
ISSN: 0961-5539

Keywords

Article
Publication date: 6 December 2023

Nirmal K. Manna, Abhinav Saha, Nirmalendu Biswas and Koushik Ghosh

The purpose of this study is to investigate the influence of enclosure shape on magnetohydrodynamic (MHD) nanofluidic flow, heat transfer and irreversibility in square…

Abstract

Purpose

The purpose of this study is to investigate the influence of enclosure shape on magnetohydrodynamic (MHD) nanofluidic flow, heat transfer and irreversibility in square, trapezoidal and triangular thermal systems under fluid volume constraints, with the aim of optimizing thermal behavior in diverse applications.

Design/methodology/approach

The study uses numerical simulations based on a finite element-based technique to analyze the effects of the Rayleigh number (Ra), Hartmann number (Ha), magnetic field orientation (γ) and nanoparticle concentration (ζ) on heat transfer characteristics and thermodynamic entropy production.

Findings

The key findings reveal that the geometrical design significantly influences fluid velocity, heat transfer and irreversibility. Trapezoidal thermal systems outperform square systems, while triangular systems achieve optimal enhancement. Nanoparticle concentration enhances heat transfer and flow strength at higher Rayleigh numbers. The magnetic field intensity has a significant impact on fluid flow and heat transport in natural convection, with higher Hartmann numbers resulting in reduced flow strength and heat transfer. The study also highlights the influence of various parameters on thermodynamic entropy production.

Research limitations/implications

Further research can explore additional geometries, parameters and boundary conditions to expand the understanding of enclosure shape effects on MHD nanofluidic flow and heat transfer. Experimental validation can complement the numerical simulations presented in this study.

Originality/value

This study provides valuable insights into the impact of enclosure shape on heat transfer performance in MHD nanofluid flow systems. The findings contribute to the optimization of thermal behavior in applications such as electronics cooling and energy systems. The comparison of different enclosure shapes and the analysis of thermodynamic entropy production add novelty to the study.

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. 34 no. 2
Type: Research Article
ISSN: 0961-5539

Keywords

Article
Publication date: 3 June 2019

Yazhou Wang, Guoliang Qin, Ximeng Ye and Zhenzhong Bao

The purpose of this paper is to develop a numerical framework based on the accurate spectral element method (SEM) to simulate the mixed convective heat transfer within a porous…

Abstract

Purpose

The purpose of this paper is to develop a numerical framework based on the accurate spectral element method (SEM) to simulate the mixed convective heat transfer within a porous enclosure with three adiabatic thin baffles of different lengths in nine cases and analyze the effects of several parameters.

Design/methodology/approach

The authors develop an improved time-splitting method to solve the Darcy–Brinkman–Forchheimer model. No extra assumptions are introduced for the intermediate velocity, and the final velocity field satisfies the incompressible constraint strictly compared with the classical method. The governing equations are split into a pure convection problem, a Stokes problem and a thermal diffusion problem. The least-squares variation is adopted for the Stokes problem, and the Galerkin variation is used for the other two problems, such that the pressure and velocity can be discretized with the same interpolation order, which benefits the numerical accuracy and program design.

Findings

Regarding the method, the excellent spectral accuracy, the capability of discretizing complex computational regions and the improved time-splitting methods make SEM an effective tool to accurately predict the non-Darcy convective heat transfer; as for the numerical tests, it is observed that weakened convection and heat transfer are induced by the increasing length of the baffles. The flow and heat transfer in channel 1 is only related to the length of baffle 1 because of the downward-driven right sidewall, and it is more difficult for baffle 3 to form the secondary flow on its tip.

Originality/value

A novel numerical framework for Darcy–Brinkman–Forchheimer model is developed, expanding the application of SEM for simulating non-Darcy convective heat transfer to improve the numerical accuracy. Numerical results and analysis for flow and heat fields could help designers understand the control of heat transfer using adiabatic baffles better.

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. 29 no. 9
Type: Research Article
ISSN: 0961-5539

Keywords

Article
Publication date: 4 December 2018

Alireza Rahimi, Ali Dehghan Saee, Abbas Kasaeipoor and Emad Hasani Malekshah

The purpose of this paper is to carry out a comprehensive review of some latest studies devoted to natural convection phenomenon in the enclosures because of its significant…

1165

Abstract

Purpose

The purpose of this paper is to carry out a comprehensive review of some latest studies devoted to natural convection phenomenon in the enclosures because of its significant industrial applications.

Design/methodology/approach

Geometries of the enclosures have considerable influences on the heat transfer which will be important in energy consumption. The most useful geometries in engineering fields are treated in this literature, and their effects on the fluid flow and heat transfer are presented.

Findings

A great variety of geometries included with different physical and thermal boundary conditions, heat sources and fluid/nanofluid media are analyzed. Moreover, the results of different types of methods including experimental, analytical and numerical are obtained. Different natures of natural convection phenomenon including laminar, steady-state and transient, turbulent are covered. Overall, the present review enhances the insight of researchers into choosing the best geometry for thermal process.

Originality/value

A comprehensive review on the most practical geometries in the industrial application is performed.

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. 29 no. 3
Type: Research Article
ISSN: 0961-5539

Keywords

Article
Publication date: 30 April 2020

Rajul Garg, Harishchandra Thakur and Brajesh Tripathi

The study aims to highlight the behaviour of one-dimensional and two-dimensional fin models under the natural room conditions, considering the different values of dimensionless…

Abstract

Purpose

The study aims to highlight the behaviour of one-dimensional and two-dimensional fin models under the natural room conditions, considering the different values of dimensionless Biot number (Bi). The effect of convection and radiation on the heat transfer process has also been demonstrated using the meshless local Petrov–Galerkin (MLPG) approach.

Design/methodology/approach

It is true that MLPG method is time-consuming and expensive in terms of man-hours, as it is in the developing stage, but with the advent of computationally fast new-generation computers, there is a big possibility of the development of MLPG software, which will not only reduce the computational time and cost but also enhance the accuracy and precision in the results. Bi values of 0.01 and 0.10 have been taken for the experimental investigation of one-dimensional and two-dimensional rectangular fin models. The numerical simulation results obtained by the analytical method, benchmark numerical method and the MLPG method for both the models have been compared with that of the experimental investigation results for validation and found to be in good agreement. Performance of the fin has also been demonstrated.

Findings

The experimental and numerical investigations have been conducted for one-dimensional and two-dimensional linear and nonlinear fin models of rectangular shape. MLPG is used as a potential numerical method. Effect of radiation is also, implemented successfully. Results are found to be in good agreement with analytical solution, when one-dimensional steady problem is solved; however, two-dimensional results obtained by the MLPG method are compared with that of the finite element method and found that the proposed method is as accurate as the established method. It is also found that for higher Bi, the one-dimensional model is not appropriate, as it does not demonstrate the appreciated error; hence, a two-dimensional model is required to predict the performance of a fin. Radiative fin illustrates more heat transfer than the pure convective fin. The performance parameters show that as the Bi increases, the performance of fin decreases because of high thermal resistance.

Research limitations/implications

Though, best of the efforts have been put to showcase the behaviour of one-dimensional and two-dimensional fins under nonlinear conditions, at different Bi values, yet lot more is to be demonstrated. Nonlinearity, in the present paper, is exhibited by using the thermal and material properties as the function of temperature, but can be further demonstrated with their dependency on the area. Additionally, this paper can be made more elaborative by extending the research for transient problems, with different fin profiles. Natural convection model is adopted in the present study but it can also be studied by using forced convection model.

Practical implications

Fins are the most commonly used medium to enhance heat transfer from a hot primary surface. Heat transfer in its natural condition is nonlinear and hence been demonstrated. The outcome is practically viable, as it is applicable at large to the broad areas like automobile, aerospace and electronic and electrical devices.

Originality/value

As per the literature survey, lot of work has been done on fins using different numerical methods; but to the best of authors’ knowledge, this study is first in the area of nonlinear heat transfer of fins using dimensionless Bi by the truly meshfree MLPG method.

Details

Engineering Computations, vol. 37 no. 8
Type: Research Article
ISSN: 0264-4401

Keywords

Article
Publication date: 1 August 1995

Franz Zdravistch, Clive A. Fletcher and Masud Behnia

Numerical predictions of laminar and turbulent fluid flow and heattransfer around staggered and in‐line tube banks are shown to agree closelywith seven experimental test cases…

Abstract

Numerical predictions of laminar and turbulent fluid flow and heat transfer around staggered and in‐line tube banks are shown to agree closely with seven experimental test cases. The steady state Reynolds‐averaged Navier‐Stokes equations are discretised by means of a cell‐centred finite‐volume algorithm. Two‐dimensional results include velocity vectors and streamlines, surface shear stresses, pressure coefficient distributions, temperature contours, local Nusselt number distributions and average convective heat transfer coefficients, and indicate very good agreement with experimental data. It is found that a relatively fine grid is required to be able to predict the surface heat transfer behaviour accurately. Also, three‐dimensional simulations are shown, which are physically consistent. The numerical procedure presented here is robust, accurate and time efficient, making it suitable as a design tool for tube banks in heat exchangers.

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. 5 no. 8
Type: Research Article
ISSN: 0961-5539

Keywords

Article
Publication date: 11 July 2019

Elzbieta Fornalik-Wajs, Aleksandra Roszko, Janusz Donizak and Anna Kraszewska

Nanofluids’ properties made them interesting for various areas like engineering, medicine or cosmetology. Discussed here, research pertains to specific problem of heat transfer

Abstract

Purpose

Nanofluids’ properties made them interesting for various areas like engineering, medicine or cosmetology. Discussed here, research pertains to specific problem of heat transfer enhancement with application of the magnetic field. The main idea was to transfer high heat rates with utilization of nanofluids including metallic non-ferrous particles. The expectation was based on changed nanofluid properties. However, the results of experimental analysis did not meet it. The heat transfer effect was smaller than in the case of base fluid. The only way to understand the process was to involve the computational fluid dynamics, which could help to clarify this issue. The purpose of this research is deep understanding of the external magnetic field effect on the nanofluids heat transfer.

Design/methodology/approach

In presented experimental and numerical studies, the water and silver nanofluids were considered. From the numerical point of view, three approaches to model the nanofluid in the strong magnetic field were used: single-phase Euler, Euler–Euler and Euler–Lagrange. In two-phase approach, the momentum transfer equations for individual phases were coupled through the interphase momentum transfer term expressing the volume force exerted by one phase on the second one.

Findings

Therefore, the results of numerical simulation predicted decrease of convection heat transfer for nanofluid with respect to pure water, which agreed with the experimental results. The experimental and numerical results are in good agreement with each other, which confirms the right choice of two-phase approach in analysis of nanofluid thermo-magnetic convection.

Originality/value

The Euler–Lagrange exhibit the best matching with the experimental results.

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. 30 no. 6
Type: Research Article
ISSN: 0961-5539

Keywords

1 – 10 of over 6000