Search results

1 – 10 of over 49000
Book part
Publication date: 21 November 2018

Jun Xiu Low, Poi Ngian Shek and Mahmood Md Tahir

Composite slabs are gaining wide acceptance in many countries as they lend themselves to faster, lighter and more economic in construction buildings. The strength of composite

Abstract

Composite slabs are gaining wide acceptance in many countries as they lend themselves to faster, lighter and more economic in construction buildings. The strength of composite slabs system relies on the bonding action between the concrete and the steel deck, the shear connections and the cross-sectional resistance of steel beam. However, structural behaviour of composite slab is a complex phenomenon and therefore experimental study is often conducted to establish the actual strength of the structure under ultimate load capacity. The main objective of this study is to determine the structural behaviour of composite slab system until ultimate limit state. Total of two specimens are examined in order to obtain failure mechanism of the composite structure under full load capacity. A new design approach of composite slab for roofing system are proposed in this study to construct a composite slab system that can float in the water but not wash away by flood. The lightweight materials in this composite construction are cold-formed steel and foam concrete. The system focuses on the concept of Industrialised building system (IBS) to reduce the cost and construction time.

Details

Improving Flood Management, Prediction and Monitoring
Type: Book
ISBN: 978-1-78756-552-4

Keywords

Article
Publication date: 18 July 2023

Chaofan Jia, Shaolin Li, Xiuhua Guo, Juanhua Su and Kexing Song

The effect of different service parameters on the current-carrying tribological properties of CF-Al2O3/Cu composites was investigated, and the damage behavior of the composites

54

Abstract

Purpose

The effect of different service parameters on the current-carrying tribological properties of CF-Al2O3/Cu composites was investigated, and the damage behavior of the composites under different service parameters was probed. The purpose of this study is to provide a theoretical basis for the application of CF-Al2O3/Cu composites.

Design/methodology/approach

The composites were fabricated by internal oxidation combined with powder metallurgy. The current-carrying tribological properties of CF-Al2O3/Cu composites were investigated on an electrical damage test system at different loads and currents.

Findings

As the load increases, the wear mechanism of the composite changes from abrasive wear to delamination wear. As the current increases, the oxidation wear and arc erosion of the composites gradually intensified. Under the service parameters of 0–25 A and 30–40 N, the composite has relatively stable current-carrying tribological properties.

Originality/value

This paper could provide a theoretical basis for the practical application of CF-Al2O3/Cu composites.

Details

Industrial Lubrication and Tribology, vol. 75 no. 6
Type: Research Article
ISSN: 0036-8792

Keywords

Article
Publication date: 31 May 2024

Kavimani V., Kumaran S., Vignesh Ponnusamy and Navneet Kumar

This study aims to analyze the effect of interrupted rolling on microstructures and mechanical properties of Mg–8Li–xGr composite is investigated.

Abstract

Purpose

This study aims to analyze the effect of interrupted rolling on microstructures and mechanical properties of Mg–8Li–xGr composite is investigated.

Design/methodology/approach

Graphene reinforced composite was developed by using stir casting route and rolled with different reduction in thickness such as 50, 75 and 90%. Microstructure, hardness and tensile characteristics of the rolled samples were evaluated.

Findings

Investigation on microstructures of rolled composite depicts that increase in rolling reduction % resulted in fine elongated grains and decreased aspect ratio. Further, it was also observed that increasing percentage of rolling reduction promotes the dissolution of ß Li phase and as a result the ductility of composite decreases. Interrupted rolled samples showcase higher hardness when compared with as-cast composite. Composite rolled with 90% reduction displays higher yield strength of 219 MPa. Hardening capacity of composites decreases with increase in reduction percentage due to the effective reduction in grain size.

Originality/value

Investigation on the influence of interrupted rolling on microstructures and mechanical properties of Mg graphene composite. The in-depth understanding of this will help to improve its wide spread application.

Details

World Journal of Engineering, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 1708-5284

Keywords

Article
Publication date: 16 May 2024

Depeng Zhang, Jiaxin Ma and Zhenxing He

With the appearance of additional review functionality on e-commerce platforms emotional changes in composite reviews have become more diverse. How consumers process the emotional…

Abstract

Purpose

With the appearance of additional review functionality on e-commerce platforms emotional changes in composite reviews have become more diverse. How consumers process the emotional changes in composite reviews is an important concern for companies. This study investigates the impact of explores how changes in the emotional valence and emotional intensity of composite reviews on consumers' information adoption.

Design/methodology/approach

Based on emotion as social information theory, this study constructs a double mediation model of how the change in emotional valence of composite reviews affects consumers' adoption intention and examines the moderating effect of the dynamic change of emotional intensity. One field and three online experiments were conducted to test the proposed hypotheses.

Findings

Consumers were more likely to adopt positive–negative composite reviews than negative–positive composite reviews. Compared to negative–positive composite reviews, positive–negative composite reviews led to higher perceived empathy and lower motivational suspicion, which, in turn, led to higher information adoption. Moreover, dynamic changes in emotional intensity played a moderating role in this effect. Interestingly, the amount of attribute difference changed the differences in perceived empathy and motivated consumer suspicion generated by the composite review when considering the reviewer’s attribute difference description.

Originality/value

The findings have important theoretical contributions that deepen business and consumer understanding of the impact of composite reviews and have practical implications for improving the management of composite reviews by businesses.

Details

Industrial Management & Data Systems, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 0263-5577

Keywords

Article
Publication date: 21 October 2022

Longxiao Zhang and Ting Xie

The purpose of this paper is to explore the geometric parameter difference of the terrace-like structural transfer film under different working parameters [pressure and velocity…

94

Abstract

Purpose

The purpose of this paper is to explore the geometric parameter difference of the terrace-like structural transfer film under different working parameters [pressure and velocity (PV) values] and filled particle types (three fillers: SiO2, TiO2 and ZnO), and find the geometric parameter related to the wear of polytetrafluoroethylene (PTFE)-based composites.

Design/methodology/approach

PTFE composites were filled with SiO2, TiO2 and ZnO particles, and the morphology parameter of the PTFE composite transfer film under different PV values obtained from the rotary reciprocating pin-on-disk frictional tester was quantified by using a three-dimensional laser scanning microscope.

Findings

The results showed that the effective layer coverage rate and effective thickness of the transfer film had a good relationship with the wear of the three PTFE composites. On the whole, increasing the speed or load was helpful to increase the effective thickness of the three PTFE composite transfer films, but reduced the effective layer coverage rate. The greater the effective layer coverage rate and effective thickness of the transfer film, the better the wear resistance of the PTFE composites in the entire speed and load range.

Originality/value

This work will promote further understanding of the transfer film and lay a foundation for realizing its morphology regulation and improving the wear of the PTFE composites.

Details

Industrial Lubrication and Tribology, vol. 75 no. 1
Type: Research Article
ISSN: 0036-8792

Keywords

Article
Publication date: 19 April 2024

Hoda Sabry Sabry Othman, Salwa H. El-Sabbagh and Galal A. Nawwar

This study aims to investigate the behavior of the green biomass-derived copper (lignin/silica/fatty acids) complex, copper lignin/silica/fatty acids (Cu-LSF) complex, when…

Abstract

Purpose

This study aims to investigate the behavior of the green biomass-derived copper (lignin/silica/fatty acids) complex, copper lignin/silica/fatty acids (Cu-LSF) complex, when incorporated into the nonpolar ethylene propylene diene (EPDFM) rubber matrix, focusing on its reinforcing and antioxidant effect on the resulting EPDM composites.

Design/methodology/approach

The structure of the prepared EPDM composites was confirmed by Fourier-transform infrared spectroscopy, and the dispersion of the additive fillers and antioxidants in the EPDM matrix was investigated using scanning electron microscopy. Also, the rheometric characteristics, mechanical properties, swelling behavior and thermal gravimetric analysis of all the prepared EPDM composites were explored as well.

Findings

Results revealed that the Cu-LSF complex dispersed well in the nonpolar EPDM rubber matrix, in thepresence of coupling system, with enhanced Cu-LSF-rubber interactions and increased cross-linking density, which reflected on the improved rheological and mechanical properties of the resulting EPDM composites. From the various investigations performed in the current study, the authors can suggest 7–11 phr is the optimal effective concentration of Cu-LSF complex loading. Interestingly, EPDM composites containing Cu-LSF complex showed better antiaging performance, thermal stability and fluid resistance, when compared with those containing the commercial antioxidants (2,2,4-trimethyl-1,2-dihydroquinoline and N-isopropyl-N’-phenyl-p-phenylenediamine). These findings are in good agreement with our previous study on polar nitrile butadiene rubber.

Originality/value

The current study suggests the green biomass-derived Cu-LSF complex to be a promising low-cost and environmentally safe alternative filler and antioxidant to the hazardous commercial ones.

Details

Pigment & Resin Technology, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 0369-9420

Keywords

Article
Publication date: 30 April 2024

Shuang Huang, Haitao Zhang and Tengjiang Yu

This study aims to investigate the micro mechanism of macro rheological characteristics for composite modified asphalt.Grey relational analysis (GRA) was used to analyze the…

Abstract

Purpose

This study aims to investigate the micro mechanism of macro rheological characteristics for composite modified asphalt.Grey relational analysis (GRA) was used to analyze the correlation between macro rheological indexes and micro infrared spectroscopy indexes.

Design/methodology/approach

First, a dynamic shear rheometer and a bending beam rheometer were used to obtain the evaluation indexes of high- and low-temperature rheological characteristics for asphalt (virgin, SBS/styrene butadiene rubber [SBR], SBS/rubber and SBR/rubber) respectively, and its variation rules were analyzed. Subsequently, the infrared spectroscopy test was used to obtain the micro rheological characteristics of asphalt, which were qualitatively and quantitatively analyzed, and its variation rules were analyzed. Finally, with the help of GRA, the macro-micro evaluation indexes were correlated, and the improvement efficiency of composite modifiers on asphalt was explored from rheological characteristics.

Findings

It was found that the deformation resistance and aging resistance of SBS/rubber composite modified asphalt are relatively good, and the modification effect of composite modifier and virgin asphalt is realized through physical combination, and the rheological characteristics change with the accumulation of functional groups. The correlation between macro rutting factor and micro functional group index is high, and the relationship between macro Burgers model parameters and micro functional group index is also close.

Originality/value

Results reveal the basic principle of inherent-improved synergistic effect for composite modifiers on asphalt and provide a theoretical basis for improving the composite modified asphalt.

Details

Pigment & Resin Technology, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 0369-9420

Keywords

Article
Publication date: 16 April 2024

P. Gunasekar, Anderson A. and Praveenkumar T.R.

Composite materials have revolutionized the aerospace industry by offering superior structural qualities over traditional elements. This study aims to focus on the development and…

Abstract

Purpose

Composite materials have revolutionized the aerospace industry by offering superior structural qualities over traditional elements. This study aims to focus on the development and testing of bamboo natural fiber-based composites enhanced with SiO2 nanoparticles.

Design/methodology/approach

The investigation involved fabricating specimens with varying nanoparticle compositions (0, 10 and 20%) and conducting tensile, flexural, impact and fracture toughness tests. Results indicated significant improvements in mechanical properties with the addition of nanoparticles, particularly at a 10% composition level.

Findings

This study underscores the potential of natural fiber composites, highlighting their environmental friendliness, cost-effectiveness and improved structural properties when reinforced with nanoparticles. The findings suggest an optimal ratio for nanoparticle integration, emphasizing the critical role of precise mixing proportions in achieving superior composite performance.

Originality/value

The tensile strength, flexural strength, impact resistance and fracture toughness exhibited notable enhancements compared with the 0 and 20% nanoparticle compositions. The 10% composition showed the most promising outcomes, showcasing increased strength across all parameters.

Details

Aircraft Engineering and Aerospace Technology, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 1748-8842

Keywords

Article
Publication date: 6 May 2024

Ting Li, Junmiao Wu, Junhai Wang, Yunwu Yu, Xinran Li, Xiaoyi Wei and Lixiu Zhang

The purpose of this article is to prepare graphene/polyimide composite materials for use as bearing cage materials, improving the friction and wear performance of bearing cages.

Abstract

Purpose

The purpose of this article is to prepare graphene/polyimide composite materials for use as bearing cage materials, improving the friction and wear performance of bearing cages.

Design/methodology/approach

The oil absorption and discharge tests were conducted to evaluate the oil content properties of the materials, while the mechanical properties were analyzed through cross-sectional morphology examination. Investigation into the tribological behavior and wear mechanisms encompassed characterization and analysis of wear trace morphology in PPI-based materials. Consequently, the influence of varied graphene nanoplatelets (GN) concentrations on the oil content, mechanical and tribological properties of PPI-based materials was elucidated.

Findings

The composites exhibit excellent oil-containing properties due to the increased porosity of PPI-GN composites. The robust formation of covalent bonds between GN and PPI amplifies the adhesive potency of the PPI-GN composites, thereby inducing a substantial enhancement in impact strength. Notably, the PPI-GN composites showed enhanced lubrication properties compared to PPI, which was particularly evident at a GN content of 0.5 Wt.%, as evidenced by the minimization of the average coefficient of friction and the width of the abrasion marks.

Practical implications

This paper includes implications for elucidating the wear mechanism of the polyimide composites under frictional wear conditions and then to guide the optimization of oil content and tribological properties of polyimide bearing cage materials.

Originality/value

In this paper, homogeneously dispersed PPI-GN composites were effectively synthesized by introducing GN into a polyimide matrix through in situ polymerization, and the lubrication mechanism of the PPI composites was compared with that of the PPI-GN composites to illustrate the composites’ superiority.

Peer review

The peer review history for this article is available at: https://publons.com/publon/10.1108/ILT-12-2023-0415

Details

Industrial Lubrication and Tribology, vol. 76 no. 4
Type: Research Article
ISSN: 0036-8792

Keywords

Article
Publication date: 14 January 2020

Wei Zhang, Seiji Yamashita, Takeshi Kumazawa, Fumihito Ozeki, Hideki Hyuga and Hideki Kita

This study aims to investigate the friction behavior of SiC-B4C composite ceramics treated by annealing in air sliding against SiC balls.

Abstract

Purpose

This study aims to investigate the friction behavior of SiC-B4C composite ceramics treated by annealing in air sliding against SiC balls.

Design/methodology/approach

The dry sliding tests were performed with a ball-on-disk tribometer in ambient air condition. Analysis of friction coefficient, phase compositions of the surfaces, morphologies of worn surfaces of disks and wear scars of balls and surface profiles of wear tracks for disks were carried out using Raman spectroscope, microscope and surface profilometer.

Findings

The results show that a self-lubricating layer with the main composition of H3BO3 was successfully fabricated on the surface of SiC-B4C composite ceramics by the annealing treatment in air. When the mass fraction of SiC is more than that of B4C, SiC-B4C composite ceramics show higher friction coefficients, the values of which are 0.38 for 80 Wt.%SiC-20 Wt.%B4C and 0.72 for 60 Wt.%SiC-40 Wt.%B4C, respectively. SiC-B4C composite ceramics show lower friction coefficients when the mass fraction of B4C is more than that of SiC. The low friction coefficients of 40 Wt.%SiC-60 Wt.% B4C composite ceramics (0.16) and 20 Wt.%SiC-80 Wt.% B4C composite ceramics (0.20) are attributed to the formation of a sufficient amount of H3BO3 layer, rather than the layer of silicon oxides.

Originality/value

This study will help to understand the friction behavior of SiC-B4C composite ceramics with different ratios of SiC to B4C treated by annealing in air.

Details

Industrial Lubrication and Tribology, vol. 72 no. 5
Type: Research Article
ISSN: 0036-8792

Keywords

1 – 10 of over 49000