Search results

1 – 2 of 2
Article
Publication date: 7 May 2024

Yinghong Li, Wei Tan, Wenjie Pei and Guorui Zhu

The purpose of this paper is to investigate the effect of NaCl solution with different concentrations on impact-sliding fretting corrosion behavior of Inconel 690TT steam…

Abstract

Purpose

The purpose of this paper is to investigate the effect of NaCl solution with different concentrations on impact-sliding fretting corrosion behavior of Inconel 690TT steam generator heat transfer tubes.

Design/methodology/approach

The optical 3D profiler was used to measure the wear profile and calculated the wear volume. Corrosion behavior was studied using open circuit potential monitoring and potentiodynamic polarization testing. The morphologies and elemental distributions of wear scars were analyzed using scanning electron microscopy and energy-dispersive spectroscopy. The synergism of wear and corrosion was analyzed according to the ASTM G119 standard.

Findings

The corrosion tendency reflected by OCP and the corrosion current calculated by Tafel both increased with the increase of NaCl concentration. The total volume loss of the material increased with concentration, and it was known from the synergism that the volume loss caused by corrosion-enhanced wear accounted for the largest proportion, while the wear-enhanced corrosion also made a greater contribution to volume loss than tangential fretting corrosion. Through the analysis of the material morphologies and synergism of wear and corrosion, the damage mechanism was elucidated.

Originality/value

The research findings can provide reference for impact-sliding fretting corrosion behavior of Inconel 690TT heat transfer tubes in NaCl solution with different concentrations.

Details

Anti-Corrosion Methods and Materials, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 0003-5599

Keywords

Article
Publication date: 7 August 2017

Wenjie Cheng, Boqin Gu and Chunlei Shao

This paper aims to figure out the steady flow status in the molten salt pump under various temperatures and blade number conditions, and give good insight on the structure and…

Abstract

Purpose

This paper aims to figure out the steady flow status in the molten salt pump under various temperatures and blade number conditions, and give good insight on the structure and temperature-dependent efficiencies of all pump cases. Finally, the main objective of present work is to get best working condition and blade numbers for optimized hydraulic performance.

Design/methodology/approach

The steady flow in the molten salt pump was studied numerically based on the three-dimensional Reynolds-Averaged Navier–Stokes equations and the standard k-ε turbulence model. Under different temperature conditions, the internal flow fields in the pumps with different blade number were systematically simulated. Besides, a quantitative backflow analysis method was proposed for further investigation.

Findings

With the molten salt fluid temperature, sharply increasing from 160°C to 480°C, the static pressure decreases gently in all pump cases, and seven-blades pump has the least backflow under low flow rate condition. The efficiencies of all pump cases increase slowly at low temperature (about 160 to 320°C), but there is almost no variation at high temperature, and obviously seven-blades pump has the best efficiency and head in all pump cases over the wide range of temperatures. The seven-blades pump has the best performance in all selected pump cases.

Originality/value

The steady flow in molten salt pumps was systematically studied under various temperature and blade number conditions for the first time. A quantitative backflow analysis method was proposed first for further investigation on the local flow status in the molten salt pump. A definition about the low velocity region in molten salt pumps was built up to account for whether the studied pump gains most energy. This method can help us to know how to improve the efficiencies of molten salt pumps.

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. 27 no. 8
Type: Research Article
ISSN: 0961-5539

Keywords

1 – 2 of 2