Search results

1 – 2 of 2
Article
Publication date: 4 September 2020

M. Vykunta Rao, Srinivasa Rao P. and B. Surendra Babu

Vibratory weld conditioning parameters have a great influence on the improvement of mechanical properties of weld connections. The purpose of this paper is to understand the…

Abstract

Purpose

Vibratory weld conditioning parameters have a great influence on the improvement of mechanical properties of weld connections. The purpose of this paper is to understand the influence of vibratory weld conditioning on the mechanical and microstructural characterization of aluminum 5052 alloy weldments. An attempt is made to understand the effect of the vibratory tungsten inert gas (TIG) welding process parameters on the hardness, ultimate tensile strength and microstructure of Al 5052-H32 alloy weldments.

Design/methodology/approach

Aluminum 5052 H32 specimens are welded at different combinations of vibromotor voltage inputs and time of vibrations. Voltage input is varied from 50 to 230 V at an interval of 10 V. At each voltage input to the vibromotor, there are three levels of time of vibration, i.e. 80, 90 and 100 s. The vibratory TIG-welded specimens are tested for their mechanical and microstructural properties.

Findings

The results indicate that the mechanical properties of aluminum alloy weld connections improved by increasing voltage input up to 160 V. Also, it has been observed that by increasing vibromotor voltage input beyond 160 V, mechanical properties were reduced significantly. It is also found that vibration time has less influence on the mechanical properties of weld connections. Improvement in hardness and ultimate tensile strength of vibratory welded joints is 16 and 14%, respectively, when compared without vibration, i.e. normal weld conditions. Average grain size is measured as per ASTM E 112–96. Average grain size is in the case of 0, 120, 160 and 230 is 20.709, 17.99, 16.57 and 20.8086 µm, respectively.

Originality/value

Novel vibratory TIG welded joints are prepared. Mechanical and micro-structural properties are tested.

Details

World Journal of Engineering, vol. 17 no. 6
Type: Research Article
ISSN: 1708-5284

Keywords

Article
Publication date: 16 September 2020

Venkata Suresh Bade, Srinivasa Rao P. and Govinda Rao P.

The purpose of this paper is to investigate the prominence of mechanical excitations at the time of welding. In the past years, the process of welding technology has expanded its…

Abstract

Purpose

The purpose of this paper is to investigate the prominence of mechanical excitations at the time of welding. In the past years, the process of welding technology has expanded its influence in manufacturing. The crucial drawback of conventional welding is prompted by internal stresses and distortions, which is the focal reason for weld defects. These weld defects can be diminished by the process called post-weld heat treatment (PWHT), which consumes more working hours and needs skilled workers. To replace these PWHT processes, mechanical vibrations are introduced during the process of welding to diminish these weld defects.

Design/methodology/approach

In the current research, the mechanical vibrations are transferred to weld-pool through vibro-motor and DC motor connected to the electrode. As per standards, the tensile test specimens were prepared for welding with different voltages of vibro-motor and DC motor respectively. The weld joints were tested for tensile strength and analyzed the microstructure at the fusion zone.

Findings

Melt-ability at fusion zone of 1018 mild steel was investigated by the single-stroke intense heat process of fusion welding. It is observed that the mechanical vibrations technique has a profound influence on the enhancement of the fusion zone characteristics and grain structure. The peak value of the tensile strength is observed at 100 s of vibration, 190 V of vibro-motor voltage and 18 V of electrode voltage. The tensile strength of the welded joints with vibrations is increased up to 22.64% when it is compared with conventional welding. The enhancement of the tensile strength of the weld bead was obtained because of the formation of fine grain structure. So, mechanical vibrations are identified as the most convenient method for improving the mild steel alloys weld quality.

Originality/value

A novel approach called mechanical vibrations during the process of welding is implemented for fusion zone refinement.

Details

World Journal of Engineering, vol. 17 no. 6
Type: Research Article
ISSN: 1708-5284

Keywords

1 – 2 of 2