Search results

1 – 10 of over 2000

Abstract

Details

The Handbook of Road Safety Measures
Type: Book
ISBN: 978-1-84855-250-0

Article
Publication date: 26 July 2021

Giovani Gaiardo Fossati, Letícia Fleck Fadel Miguel and Walter Jesus Paucar Casas

This study aims to propose a complete and powerful methodology that allows the optimization of the passive suspension system of vehicles, which simultaneously takes comfort and…

Abstract

Purpose

This study aims to propose a complete and powerful methodology that allows the optimization of the passive suspension system of vehicles, which simultaneously takes comfort and safety into account and provides a set of optimal solutions through a Pareto-optimal front, in a low computational time.

Design/methodology/approach

Unlike papers that consider simple vehicle models (quarter vehicle model or half car model) and/or simplified road profiles (harmonic excitation, for example) and/or perform a single-objective optimization and/or execute the dynamic analysis in the time domain, this paper presents an effective and fast methodology for the multi-objective optimization of the suspension system of a full-car model (including the driver seat) traveling on an irregular road profile, whose dynamic response is determined in the frequency domain, considerably reducing computational time.

Findings

The results showed that there was a reduction of 28% in the driver seat vertical acceleration weighted root mean square (RMS) value of the proposed model, which is directly related to comfort, and, simultaneously, an improvement or constancy concerning safety, with low computational cost. Hence, the proposed methodology can be indicated as a successful tool for the optimal design of the suspension systems, considering, simultaneously, comfort and safety.

Originality/value

Despite the extensive literature on optimizing vehicle passive suspension systems, papers combining multi-objective optimization presenting a Pareto-optimal front as a set of optimal results, a full-vehicle model (including the driver seat), an irregular road profile and the determination of the dynamic response in the frequency domain are not found.

Details

Engineering Computations, vol. 39 no. 3
Type: Research Article
ISSN: 0264-4401

Keywords

Article
Publication date: 26 February 2024

Leonardo Valero Pereira, Walter Jesus Paucar Casas, Herbert Martins Gomes, Luis Roberto Centeno Drehmer and Emanuel Moutinho Cesconeto

In this paper, improvements in reducing transmitted accelerations in a full vehicle are obtained by optimizing the gain parameters of an active control in a roughness road…

Abstract

Purpose

In this paper, improvements in reducing transmitted accelerations in a full vehicle are obtained by optimizing the gain parameters of an active control in a roughness road profile.

Design/methodology/approach

For a classically designed linear quadratic regulator (LQR) control, the vibration attenuation performance will depend on weighting matrices Q and R. A methodology is proposed in this work to determine the optimal elements of these matrices by using a genetic algorithm method to get enhanced controller performance. The active control is implemented in an eight degrees of freedom (8-DOF) vehicle suspension model, subjected to a standard ISO road profile. The control performance is compared against a controlled system with few Q and R parameters, an active system without optimized gain matrices, and an optimized passive system.

Findings

The control with 12 optimized parameters for Q and R provided the best vibration attenuation, reducing significantly the Root Mean Square (RMS) accelerations at the driver’s seat and car body.

Research limitations/implications

The research has positive implications in a wide class of active control systems, especially those based on a LQR, which was verified by the multibody dynamic systems tested in the paper.

Practical implications

Better active control gains can be devised to improve performance in vibration attenuation.

Originality/value

The main contribution proposed in this work is the improvement of the Q and R parameters simultaneously, in a full 8-DOF vehicle model, which minimizes the driver’s seat acceleration and, at the same time, guarantees vehicle safety.

Details

Engineering Computations, vol. 41 no. 1
Type: Research Article
ISSN: 0264-4401

Keywords

Article
Publication date: 4 July 2016

Herbert Martins Gomes

The purpose of this paper is to investigate the optimum design of a quarter car passive suspension system using a particle swarm optimization algorithm in order to minimize the…

Abstract

Purpose

The purpose of this paper is to investigate the optimum design of a quarter car passive suspension system using a particle swarm optimization algorithm in order to minimize the applied loads and vibrations.

Design/methodology/approach

The road excitation is assumed as zero-mean random field and modeled by single-sided power spectral density (PSD) based on international standard ISO 8608. The variance of sprung mass displacements and variance of dynamic applied load are evaluated by PSD functions and used as cost function for the optimization.

Findings

The advantages in using this methodology are emphasized by an example of the multi-objective optimization design of suspension parameters and the results are compared with values reported in the literature and other gradient based and heuristic algorithms. The paper shows that the algorithm effectively leads to reliable results for suspension parameters with low computational effort.

Research limitations/implications

The procedure is applied to a quarter car passive suspension design.

Practical implications

The proposed procedure implies substantial time savings due to frequency domain analysis.

Social implications

The paper proposes a procedure that allows complex optimization designs to be feasible and cost effective.

Originality/value

The design optimization is performed in the frequency domain taking into account standard defined road profiles PSD without the need to simulate in the time domain.

Details

Engineering Computations, vol. 33 no. 5
Type: Research Article
ISSN: 0264-4401

Keywords

Abstract

Details

The Handbook of Road Safety Measures
Type: Book
ISBN: 978-1-84855-250-0

Article
Publication date: 5 October 2021

Min Zhang, Cheng Hu, Jingwei Gao and Peng Zheng

Suspension is a significantly important component for automotive and railway vehicles. Regenerative hydraulic-electric shock absorbers (RHSA) have been proposed for the purpose of…

Abstract

Purpose

Suspension is a significantly important component for automotive and railway vehicles. Regenerative hydraulic-electric shock absorbers (RHSA) have been proposed for the purpose of attenuating vibration of vehicle suspension, and also recover kinetic energy originated from vehicle vibration that is conventionally dissipated by hydraulic dampers. To advance the technology, the paper aims to present an RHSA system for heavy-duty and railway vehicles and create a dynamic modelling to discuss on the development process of RHSA model.

Design/methodology/approach

First, the development of RHSA dynamic model can be resolved into three stage models (an ideal one, a second one with an added accumulator and a third one that considers both accumulator and system losses) to comprehensively evaluate the RHSA's characterisation. Second, a prototype is fabricated for testing and the results meet desired agreements between simulation and measurement. Finally, the study of key parameters is carried out to investigate the influences of hydraulic-cylinder size, hydraulic-motor displacement and accumulator pre-charged pressure on the RHSA system.

Findings

The findings of sensitivity analysis indicate that the component design can satisfy the damping characteristics and power performance required for heavy-duty vehicle, freight wagon and typical passenger train. The results also show that reducing the losses is highly beneficial for saving suspension energy, improving system reliability and increasing power-conversion efficiency.

Originality/value

The paper presents a more detailed method for the development and analysis of a RHSA. Compared with the typical shock absorbers, RHSA can also recover the vibration energy dissipated by suspension.

Details

Engineering Computations, vol. 39 no. 4
Type: Research Article
ISSN: 0264-4401

Keywords

Article
Publication date: 21 August 2009

Daisuke Chugo, Kuniaki Kawabata, Hayato Kaetsu, Hajime Asama and Taketoshi Mishima

The purpose of this paper is to develop a new wheel control scheme for wheeled vehicle with passive linkage mechanism which realizes high step‐overcoming performance.

Abstract

Purpose

The purpose of this paper is to develop a new wheel control scheme for wheeled vehicle with passive linkage mechanism which realizes high step‐overcoming performance.

Design/methodology/approach

Developing wheeled vehicle realizes omni‐directional motion on flat floor using special wheels and passes over non‐flat ground using the passive suspension mechanism. The vehicle changes its body shape and wheel control references according to ground condition when it runs over the rough terrain.

Findings

Utilizing the proposed wheel control scheme, the slip ratio and the disturbance ratio of the wheel reduce when the vehicle passes over the step and its step‐overcoming performance is improved.

Originality/value

The paper's key idea is modification of its kinematic model referring to the body configuration dynamically and using this model for wheel control of the vehicle. The controller adjusts the wheel control references when the vehicle passes over the rough terrain changing the body shape and reduces the slippage and the rotation error of wheels.

Details

Industrial Robot: An International Journal, vol. 36 no. 5
Type: Research Article
ISSN: 0143-991X

Keywords

Article
Publication date: 1 August 2016

Lalitkumar Jugulkar, Shankar Singh and Suresh Sawant

The work presented in this paper is concerned with mathematical modeling and experimental validation of mono-tube shock absorber. This paper aims to create damper model to predict…

Abstract

Purpose

The work presented in this paper is concerned with mathematical modeling and experimental validation of mono-tube shock absorber. This paper aims to create damper model to predict accurately damping force, and experimental analysis is done by varying the various parameters, such as flow area in bleed(Ab), mass (M) and operating frequency(?).

Design/methodology/approach

Here, input is given in the form of sinusoidal excitation, and the output is received as a numerical data of the displacement transmissibility. These data are then processed to get the values of transmissibility and magnification factor for various frequency ratios. They are then plotted to have transmissibility and frequency response curves, as it is a generally accepted measure of how well the system is isolated from its surroundings.

Findings

It is better to have low transmissibility (larger bleed area), for lower suspension velocity, as it will reduce maximum acceleration transmitted to the sprung mass. However, for higher suspension velocity, bleed area should be low (higher transmissibility) to reduce displacement of tyre from road.

Originality/value

The development of faster vehicles and also the requirements of smoother and more comfortable rides have led to the fitment of dampers on almost on all present day vehicles. Shock absorbers have a significant influence on handling performance and riding comfort. Shock absorber plays an important role not only for comfort of the riders of the vehicle but also in the performance and life of the vehicle. However, no further reduction of vehicle vibration can be expected for using the optimum values of damping coefficient and spring stiffness for the shock absorber. Thus, it is necessary to make modification to improve the functions of shock absorber.

Details

World Journal of Engineering, vol. 13 no. 4
Type: Research Article
ISSN: 1708-5284

Keywords

Content available
Article
Publication date: 1 March 2001

43

Abstract

Details

Sensor Review, vol. 21 no. 1
Type: Research Article
ISSN: 0260-2288

Keywords

Article
Publication date: 17 September 2018

Ana Paula Zanatta, Ben Hur Bandeira Boff, Paulo Roberto Eckert, Aly Ferreira Flores Filho and David George Dorrell

Semi-active suspension systems with electromagnetic dampers allow energy regeneration and the required control strategies are easier to implement than the active suspensions are…

Abstract

Purpose

Semi-active suspension systems with electromagnetic dampers allow energy regeneration and the required control strategies are easier to implement than the active suspensions are. This paper aims to address the application of a tubular linear permanent magnet synchronous machine for a semi-active suspension system.

Design/methodology/approach

Classical rules of mechanics and electromagnetics were applied to describe a dynamic model combining vibration and electrical machines theories. A multifaceted MATLAB®/Simulink model was implemented to incorporate equations and simulate global performance. Experimental tests on an actual prototype were carried out to investigate displacement transmissibility of the passive case. In addition, simulation results were shown for the dissipative semi-active case.

Findings

The application of the developed model suggests convergent results. For the passive case, numerical and experimental outcomes validate the parameters and confirm system function and proposed methodology. MATLAB®/Simulink results for the semi-active case are consistent, showing an improvement on the displacement transmissibility. These agree with the initial conceptual thoughts.

Originality/value

The use of linear electromagnetic devices in suspension systems is not a novel idea. However, most published papers on this subject outline active solutions, neglect semi-active ones and focus on experimental studies. However, here a dynamic mechanical-electromagnetic coupled model for a semi-active suspension system is reported. This is in conjunction with a linear electromagnetic damper.

Details

COMPEL - The international journal for computation and mathematics in electrical and electronic engineering, vol. 37 no. 5
Type: Research Article
ISSN: 0332-1649

Keywords

1 – 10 of over 2000