Search results

1 – 10 of 351
Article
Publication date: 18 August 2022

Ji-Huan He, Nasser S. Elgazery and Nader Y. Abd Elazem

This paper aims to study the magneto-radiative gas (water vapor) on an unsmooth boundary.

Abstract

Purpose

This paper aims to study the magneto-radiative gas (water vapor) on an unsmooth boundary.

Design/methodology/approach

This paper provided a numerical treatment via the implicit Chebyshev pseudo-spectral method to investigate unsteady compressible magneto-radiative gas (water vapor Pr = 1) flow near a heated vertical wavy wall through porous medium in the presence of inclined magnetic field. The impacts of viscous dissipation, temperature-dependent fluid properties, thermal conductivity and viscosity in the presence of nonlinear thermal radiation are studied. The sinusoidal surface is transformed into a flat one using a suitable transformation. The comparison figures of published data with the present outcomes illustrate a good match. The present steady-state outcomes are presented for the temperature, velocity, Nusselt number and the shearing stress through figures for several interested physical parameters, namely, compressibility, magnetic, radiation, viscosity–temperature variation, thermal conductivity–temperature variation, surface sinusoidal waveform and porous parameters.

Findings

The present numerical outcomes confirm the importance of applying nonlinear thermal radiation cases in all studies that investigate heat transfer under the influence of thermal radiation.

Originality/value

A mathematical model is established for a wavy boundary, and Chebyshev pseudo-spectral method is adopted for the numerical study.

Article
Publication date: 1 January 1994

L. Allançon, B. Porterie, R. Saurel and J.C. Loraud

A numerical analysis is given for the prediction of unsteady,two‐dimensional fluid flow induced by a heat and mass source in aninitially closed cavity which is vented when the…

Abstract

A numerical analysis is given for the prediction of unsteady, two‐dimensional fluid flow induced by a heat and mass source in an initially closed cavity which is vented when the internal overpressure reaches a certain level. A modified ICE technique is used for solving the Navier–Stokes equations governing a compressible flow at a low Mach number and high temperature. Particular attention is focused on the treatment of the boundary conditions on the vent surface. This has been treated by an original procedure using the resolution of a Riemann problem. The configuration investigated may be viewed as a test problem which allows simulation of the ventilation and cooling of such cavities. The injection of hot gases is found to play a key role on the temperature field in the enclosure, whereas the vent seems to produce a distortion of the dynamic flow‐field only. When the injection of hot gases is stopped, the enclosure heat transfer is strongly influenced by the vent. A comparison with the results obtained when the radiative heat transfer between the walls of the enclosure is considered, indicate that radiation dominates the heat transfer in the enclosure and alters the flow patterns significantly.

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. 4 no. 1
Type: Research Article
ISSN: 0961-5539

Keywords

Article
Publication date: 1 June 1995

Colomba Di Blasi

A two‐dimensional mathematical model of flame spread andsolid burning is presented. For the gas phase, it consists ofvariable density, fully elliptic Navier‐Stokes momentum…

Abstract

A two‐dimensional mathematical model of flame spread and solid burning is presented. For the gas phase, it consists of variable density, fully elliptic Navier‐Stokes momentum, energy and chemical species mass equations. Combustion processes are treated according to a one‐step, finite‐rate, reaction. The solid phase model describes a porous cellulosic fuel for a range of thicknesses from the thermally thin to the thermally thick limit. Conductive and convective heat transfer takes place as the solid degrades, by two first order Arrhenius reactions, to volatiles and chars. Variations of solid phase densities account for fuel burn‐out. Effects of gas phase and surface radiation are also included. A steady formulation of gas phase equations with respect to the unsteady solid phase mathematical model is proposed, gas phase characteristic times being much shorter than those of the solid phase. The non‐constant density Navier‐Stokes equations are formulated in terms of vorticity and stream function, avoiding the pressure‐velocity coupling and, at the same time, the adoption of a sample‐fixed coordinate system allows unsteady flame spread processes to be simulated. The solution is computed numerically by means of an iterative, operator‐splitting method based on implicit finite‐difference approximations. Numerical simulations of the dynamics of flame spread over cellulosic solids are presented and extinction limits as a consequence of reduced rates of fuel generation are determined.

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. 5 no. 6
Type: Research Article
ISSN: 0961-5539

Keywords

Article
Publication date: 3 May 2016

Dario De Marinis, Marco Donato de Tullio, Michele Napolitano and Giuseppe Pascazio

The purpose of this paper is to provide the current state of the art in the development of a computer code combining an immersed boundary method with a conjugate heat transfer…

Abstract

Purpose

The purpose of this paper is to provide the current state of the art in the development of a computer code combining an immersed boundary method with a conjugate heat transfer (CHT) approach, including some new findings. In particular, various treatments of the fluid-solid-interface conditions are compared in order to determine the most accurate one. Most importantly, the method is capable of computing a challenging three dimensional compressible turbulent flow past an air cooled turbine vane.

Design/methodology/approach

The unsteady Reynolds-averaged Navier–Stokes (URANS) equations are solved within the fluid domain, whereas the heat conduction equation is solved within the solid one, using the same spatial discretization and time-marching scheme. At the interface boundary, the temperatures and heat fluxes within the fluid and the solid are set to be equal using three different approximations.

Findings

This work provides an accurate and efficient code for solving three dimensional CHT problems, such as the flow through an air cooled gas turbine cascade, using a coupled immersed boundary (IB) CHT methodology. A one-to-one comparison of three different interface-condition approximations has shown that the two multidimensional ones are slightly superior to the early treatment based on a single direction and that the one based on a least square reconstruction of the solution near the IB minimizes the oscillations caused by the Cartesian grid. This last reconstruction is then used to compute a compressible turbulent flow of industrial interest, namely, that through an air cooled gas turbine cascade. Another interesting finding is that the very promising approach based on wall functions does not combine favourably with the interface conditions for the temperature and the heat flux. Therefore, current and future work aims at developing and testing appropriate temperature wall functions, in order to further improve the accuracy – for a given grid – or the efficiency – for a given accuracy – of the proposed methodology.

Originality/value

An accurate and efficient IB CHT method, using a state of the art URANS parallel solver, has been developed and tested. In particular, a detailed study has elucidated the influence of different interface treatments of the fluid-solid boundary upon the accuracy of the computations. Last but not least, the method has been applied with success to solve the well-known CHT problem of compressible turbulent flow past the C3X turbine guide vane.

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. 26 no. 3/4
Type: Research Article
ISSN: 0961-5539

Keywords

Article
Publication date: 1 June 1993

C.P.T. GROTH and J.J. GOTTLIEB

Partially‐decoupled upwind‐based total‐variation‐diminishing (TVD) finite‐difference schemes for the solution of the conservation laws governing two‐dimensional non‐equilibrium…

83

Abstract

Partially‐decoupled upwind‐based total‐variation‐diminishing (TVD) finite‐difference schemes for the solution of the conservation laws governing two‐dimensional non‐equilibrium vibrationally relaxing and chemically reacting flows of thermally‐perfect gaseous mixtures are presented. In these methods, a novel partially‐decoupled flux‐difference splitting approach is adopted. The fluid conservation laws and species concentration and vibrational energy equations are decoupled by means of a frozen flow approximation. The resulting partially‐decoupled gas‐dynamic and thermodynamic subsystems are then solved alternately in a lagged manner within a time marching procedure, thereby providing explicit coupling between the two equation sets. Both time‐split semi‐implicit and factored implicit flux‐limited TVD upwind schemes are described. The semi‐implicit formulation is more appropriate for unsteady applications whereas the factored implicit form is useful for obtaining steady‐state solutions. Extensions of Roe's approximate Riemann solvers, giving the eigenvalues and eigenvectors of the fully coupled systems, are used to evaluate the numerical flux functions. Additional modifications to the Riemann solutions are also described which ensure that the approximate solutions are not aphysical. The proposed partially‐decoupled methods are shown to have several computational advantages over chemistry‐split and fully coupled techniques. Furthermore, numerical results for single, complex, and double Mach reflection flows, as well as corner‐expansion and blunt‐body flows, using a five‐species four‐temperature model for air demonstrate the capabilities of the methods.

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. 3 no. 6
Type: Research Article
ISSN: 0961-5539

Keywords

Article
Publication date: 25 August 2021

Lorris Charrier, Mathieu Jubera, Grégoire Pont, Simon Marié, Pierre Brenner and Francesco Grasso

The design of a space launcher requires some considerations about the unsteady loads and heat transfer occurring at the base of the structure. In particular, these phenomena are…

Abstract

Purpose

The design of a space launcher requires some considerations about the unsteady loads and heat transfer occurring at the base of the structure. In particular, these phenomena are predominant during the early stage of the flight. This paper aims to evaluate the ability of the unstructured, high order finite-volume CFD solver FLUSEPA, developed by Airbus Safran Launchers, to accurately describe these phenomena.

Design/methodology/approach

This paper first performs a steady simulation on a base flow around a four-clustered rocket configuration. Results are compared with NASA experiments and Loci-CHEM simulations. Then, unsteady simulations of supersonic H2/air reacting mixing layer based on the experiment of Miller, Bowman and Mungal are performed. Three meshes with different cells number are used to study the impact of spatial resolution. Instantaneous and time-averaged concentrations are compared with the combined OH/acetone planar laser-induced fluorescence imaging from the experiment.

Findings

FLUSEPA satisfactorily predicts the base heat flux at the base of a four-clustered rocket configuration. NASA Loci-CHEM reactive simulations indicate that afterburning plays an important role and should not be neglected. The unsteady reactive computation of a supersonic mixing layer shows that FLUSEPA is also able to accurately predict flow structures and interactions. However, the complexity of the experiment and the lack of details concerning the facility prevents from obtaining satisfactory converged results.

Originality/value

This study is the first step on the development of a cost-effective method aiming at predicting unsteady loads and heat transfer on space launchers using an unsteady and reactive model for the CDF calculations. It uses original techniques such as conservative CHIMERA-like overset grids, local re-centering of fluxes and local adaptive time-stepping to reduce computational cost while being robust and accurate.

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. 31 no. 11
Type: Research Article
ISSN: 0961-5539

Keywords

Article
Publication date: 1 January 1995

H. Oberhem and H.A. Nour Eldin

Modelling, computation and performance animation of turbomachinerysystems has recently enjoyed remarkable attention in CAD research. This isalso reflected its application to…

Abstract

Modelling, computation and performance animation of turbomachinery systems has recently enjoyed remarkable attention in CAD research. This is also reflected its application to exhaust machine components such as turbo loaders and the exceptionally novel pressure wave machine (Comprex) in the automobile industry and gas turbines. The necessity for the thermo‐fluidic performance animation of such pressure wave machines results from the fact that the machine geometry must be adapted to the technical and thermo‐fluidic properties of the exhaust flow of the gas turbine or automobile engine. Experimental adaptation or adjustment is costly and should be validated for every application case. Thus the potential to apply accurate animation for such shock‐tube like behaviour of compressible flow is now economically promising with a view to optimizing the design of the pressure wave machine. This paper presents briefly the problem oriented algorithms used and illustrates the performance animation of the pressure wave machine operating under constant speed drive. After introducing the pressure wave machine operation, the principles and summary of the algorithms used to compute the thermodynamic behaviour within the cell, the boundary models and the accuracy of computation. A Comprex cycle operating on an engine exhaust gas with T = 920°K, p = 2bar is illustrated through 3‐dimensional representations for pressure, speed of flow and temperature. The particle path (gas and air) together with time representation of the state variables at different points of the Compex will be shown. The mass balance problem is discussed and the conditions for mass balanced flow for the gas as well as for the air side are given. The results achieved for such materially balanced pressure wave machines indicate a reduction in the costs for subsequent experimental validation and to deliver the sound base for further development towards considering the pre‐balanced transient operation cases as well.

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. 5 no. 1
Type: Research Article
ISSN: 0961-5539

Keywords

Article
Publication date: 13 July 2021

Włodzimierz Wróblewski, Krzysztof Bochon, Mirosław Majkut, Krzysztof Rusin and Emad Hasani Malekshah

The presence of air in the water flow over the hydrofoil is investigated. The examined hydrofoil is ClarkY 11.7% with an angle of attack of 8 deg. The flow simulations are…

Abstract

Purpose

The presence of air in the water flow over the hydrofoil is investigated. The examined hydrofoil is ClarkY 11.7% with an angle of attack of 8 deg. The flow simulations are performed with the assumption of different models. The Singhal cavitation model and the models which resolve the non-condensable gas including 2phases and 3phases are implemented in the numerical model. The calculations are performed with the uRANS model with assumption of the constant temperature of the mixture. The two-phase flow is simulated with a mixture model. The dynamics and structures of cavities are compared with literature data and experimental results.

Design/methodology/approach

The cavitation regime can be observed in some working conditions of turbomachines. The phase transition, which appears on the blades, is the source of high dynamic forces, noise and also can lead to the intensive erosion of the blade surfaces. The need to control this process and to prevent or reduce the undesirable effects can be fulfilled by the application of non-condensable gases to the liquid.

Findings

The results show that the Singhal cavitation model predicts the cavity structure and related characteristics differently with 2phases and 3phases models at low cavitation number where the cavitating flow is highly dynamic. On the other hand, the impact of dissolved air on the cloud structure and dynamic characteristic of cavitating flow is gently observable.

Originality/value

The originality of this paper is the evaluation of different numerical cavitation models for the prediction of dynamic characteristics of cavitating flow in the presence of air.

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. 32 no. 5
Type: Research Article
ISSN: 0961-5539

Keywords

Article
Publication date: 6 November 2007

M. Taha Janan and A. El Marjani

This paper aims to develop an efficient numerical method for simulating multicomponent flows by solving the system of conservative equations closed by a general two parameters…

Abstract

Purpose

This paper aims to develop an efficient numerical method for simulating multicomponent flows by solving the system of conservative equations closed by a general two parameters equation of state.

Design/methodology/approach

A finite difference method for solving the two‐dimensional Euler or Navier‐Stokes equations for multicomponent flows in a general curvilinear coordinate system is developed. The system of conservative equations (mass, momentum and energy) is closed with a general two parameters equation of state (ρe=(p+γp)/(γ−1)), which, associated to a γ‐formulation, allows easy computation of multicomponent flows. In order to enforce the stability of the numerical scheme, the Roe's flux‐difference splitting is adopted for the numerical treatment of the inviscid fluxes. The method is adapted to treat also unsteady flows by implementing an explicit Euler scheme.

Findings

The method was applied to compute various configurations of flows, ranging from incompressible to compressible fluid, including cases of single component flows or multicomponent ones. Computations show that the use of primitive variables instead of conservative ones, especially at low Mach numbers, improves the iteration process when the resolution is performed with a relaxation procedure such as Gauss‐Seidel method. Simulations of compressible flows with a strong shock show the ability of the present method to capture shocks correctly even with the use of primitive variables. To complete numerical tests, flows involving two fluids with the presence of interactions between a shock and a discontinuity surface have been treated successfully. Also, a case of cavitating flow has been considered in this work.

Originality/value

The present method permits the simulation of a large variety of multicomponent complexes flows with an efficient numerical taking advantage of Roe's flux‐difference splitting in curvilinear coordinate system.

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. 17 no. 8
Type: Research Article
ISSN: 0961-5539

Keywords

Article
Publication date: 29 July 2014

Haiming Huang, Guo Huang, Xiaoliang Xu and Weijie Li

Relevant analyses are presented on the base of the compressible vortex method for simulating the development of two or three co-rotating vortices with different characteristic…

Abstract

Purpose

Relevant analyses are presented on the base of the compressible vortex method for simulating the development of two or three co-rotating vortices with different characteristic Mach numbers. The paper aims to discuss this issue.

Design/methodology/approach

In addition to having vorticity and dilatation properties, the vortex particles also carry density, enthalpy, and entropy. Taking co-rotating vortices in two-dimensional unsteady compressible flow for an example, truncation of unbounded domains via a nonreflecting boundary condition was considered in order to make the method computationally efficient.

Findings

For two identical vortices, the effect of the vortex Mach number on merging process is not evident; if two vortices have the same circulation rather than different radiuses, the vorticity and dilatation fields of the vortex under a vortex Mach number will be absorbed by the vortex under a higher vortex Mach number. For three vortices, if the original arrangement of the vortices is changed, the evolvement of the vorticity and dilatation fields is different.

Originality/value

The paper reveals new mechanism of the three co-rotating vortices by a feasible compressible vortex method.

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. 24 no. 6
Type: Research Article
ISSN: 0961-5539

Keywords

1 – 10 of 351