Search results

1 – 10 of 951
Article
Publication date: 1 February 1989

E. Goold

The potentially highly automated process of surface mounting electronic components directly onto a substrate or printed circuit board possesses a very weak link. Component…

Abstract

The potentially highly automated process of surface mounting electronic components directly onto a substrate or printed circuit board possesses a very weak link. Component movement subsequent to placement and before or during solder reflow leads to defect conditions such as tombstoning or rotational misalignment. This work investigates the feasibility of replacing this ‘weak’ assembly step(s) with ultrasonics. The selection and modification of suitable ultrasonic equipment is described as in the bonding of chip components onto PCBs. Reliability analysis of the resultant bonds along with bond quality in terms of shear strength and appearance under scanning electron microscope and optical microscope is studied. The results show that, with certain preferred directions of ultrasonic weld, weld preload and weld time bond strengths obtained compare very favourably with those achieved with the present surface mount technology reflow process, hence establishing the feasibility of ultrasonics for this application.

Details

Circuit World, vol. 15 no. 3
Type: Research Article
ISSN: 0305-6120

Article
Publication date: 14 November 2023

S. Raja Balasaraswathi and Jonalee D. Bajpai

Ultrasonic welding is an emerging apparel manufacturing technique. However, the applications are widely explored in the field of technical textiles, with less exploration in the…

Abstract

Purpose

Ultrasonic welding is an emerging apparel manufacturing technique. However, the applications are widely explored in the field of technical textiles, with less exploration in the apparel endues. The purpose of this study is to explore the application of ultrasonic welding in apparel by analyzing the impacts of different parameters.

Design/methodology/approach

This study analyzed the influence of ultrasonic welding parameters, including pressure, welding speed and ultrasonic power on the seam performances (seam strength, seam bursting strength, seam thickness and seam stiffness). The parameters are optimized using Box–Behnken experimental design to achieve better seam performances.

Findings

The properties of ultrasonic seams are influenced by welding and fabric properties. Ultrasonically welded seams showed better performances in the case of comfort properties of seams, whereas the functional properties are lesser compared to conventional seams.

Originality/value

The findings of the research clearly outline the level of influence of different parameters on the performance of the ultrasonically welded seams in knitted fabrics, which can greatly help in applying ultrasonic welding manufacturing methods in apparel manufacturing.

Details

International Journal of Clothing Science and Technology, vol. 36 no. 1
Type: Research Article
ISSN: 0955-6222

Keywords

Article
Publication date: 1 December 2000

Weihua Shi and Trevor Little

Investigates the potential for building smart seams by incorporating optic fibers ultrasonically. The heating and bonding mechanisms of ultrasonic welding process in fabrics were…

1989

Abstract

Investigates the potential for building smart seams by incorporating optic fibers ultrasonically. The heating and bonding mechanisms of ultrasonic welding process in fabrics were studied. Battle dress uniform (BDU) (50/50 nylon/cotton), 100 percent cotton, 100 percent polyester and Nomex fabrics were used and were bonded ultrasonically with and without polyurethane adhesives. The effects of three important welding parameters, namely weld pressure, weld time and amplitude of vibration, on the joint strength and the temperature profile at the interface were examined. The temperature profiles for different fabrics were measured during ultrasonic welding process. The attenuation degree of signal transition properties of optic fibers incorporated was tested to determine if ultrasonic process provided a possible way of embedding optic fibers into seams and achieving sufficient joint strength while the signal transmission properties of optic fibers incorporated were not changed significantly.

Details

International Journal of Clothing Science and Technology, vol. 12 no. 5
Type: Research Article
ISSN: 0955-6222

Keywords

Article
Publication date: 31 May 2011

S. Thirunavukkarasu, B.P.C. Rao, G.K. Sharma, Viswa Chaithanya, C. Babu Rao, T. Jayakumar, Baldev Raj, Aravinda Pai, T.K. Mitra and Pandurang Jadhav

Development of non‐destructive methodology for detection of arc strike, spatter and fusion type of welding defects which may form on steam generator (SG) tubes that are in close…

Abstract

Purpose

Development of non‐destructive methodology for detection of arc strike, spatter and fusion type of welding defects which may form on steam generator (SG) tubes that are in close proximity to the circumferential shell welds. Such defects, especially fusion‐type defects, are detrimental to the structural integrity of the SG. This paper aims to focus on this problem.

Design/methodology/approach

This paper presents a new methodology for non‐destructive detection of arc strike, spatter and fusion type of welding defects. This methodology uses remote field eddy current (RFEC) ultrasonic non‐destructive techniques and K‐means clustering.

Findings

Distinctly different RFEC signals have been observed for the three types of defects and this information has been effectively utilized for automated identification of weld fusion which produces two back‐wall echoes in ultrasonic A‐scan signals. The methodology can readily distinguish fusion‐type defect from arc strike and spatter type of defects.

Originality/value

The methodology is unique as there is no standard guideline for non‐destructive evaluation of peripheral tubes after shell welding to detect arc strike, spatter and fusion type of welding defects.

Details

International Journal of Structural Integrity, vol. 2 no. 2
Type: Research Article
ISSN: 1757-9864

Keywords

Article
Publication date: 2 March 2012

Raelvim Gonzalez and Brent Stucker

The purpose of this paper is to explore the effect of different parameter configurations of oscillation amplitude, welding speed, and normal force at 478 K (400°F) on the linear…

Abstract

Purpose

The purpose of this paper is to explore the effect of different parameter configurations of oscillation amplitude, welding speed, and normal force at 478 K (400°F) on the linear welding density of stainless steel 316L annealed utrasonically consolidated (UC) samples, and present an optimum parameter set based upon maximum linear welding density criteria.

Design/methodology/approach

The paper describes the application of analysis of variance to different experimental designs in order to compare factor effects and obtain the optimum linear welding density parameter set for the ultrasonic consolidation of stainless steel 316L annealed samples.

Findings

This work includes experimental results at assessing the explained variation due to factor effects on linear welding density, the statistical significance of these factors, and the combination of UC process parameters that maximizes linear welding density in stainless steel 316L annealed samples.

Research limitations/implications

The paper presents results obtained with a specific UC system, a standard sample configuration, and relatively constant frictional conditions.

Originality/value

This work is a first step towards a reproducible UC of stainless steel 316L foils with high linear welding density.

Details

Rapid Prototyping Journal, vol. 18 no. 2
Type: Research Article
ISSN: 1355-2546

Keywords

Article
Publication date: 1 February 1991

Peter J. Wells

One option available to the design engineer who requires a permanent joining of thermoplastic parts is to weld them together.

Abstract

One option available to the design engineer who requires a permanent joining of thermoplastic parts is to weld them together.

Details

Assembly Automation, vol. 11 no. 2
Type: Research Article
ISSN: 0144-5154

Article
Publication date: 18 August 2021

Gowtham Venkatraman, Adam Hehr, Leon M. Headings and Marcelo J. Dapino

Ultrasonic additive manufacturing (UAM) is a solid-state joining technology used for three-dimensional printing of metal foilstock. The electrical power input to the ultrasonic

Abstract

Purpose

Ultrasonic additive manufacturing (UAM) is a solid-state joining technology used for three-dimensional printing of metal foilstock. The electrical power input to the ultrasonic welder is a key driver of part quality in UAM, but under the same process parameters, it can vary widely for different build geometries and material combinations because of mechanical compliance in the system. This study aims to model the relationship between UAM weld power and system compliance considering the workpiece (geometry and materials) and the fixture on which the build is fabricated.

Design/methodology/approach

Linear elastic finite element modeling and experimental modal analysis are used to characterize the system’s mechanical compliance, and linear system dynamics theory is used to understand the relationship between weld power and compliance. In-situ measurements of the weld power are presented for various build stiffnesses to compare model predictions with experiments.

Findings

Weld power in UAM is found to be largely determined by the mechanical compliance of the build and insensitive to foil material strength.

Originality/value

This is the first research paper to develop a predictive model relating UAM weld power and the mechanical compliance of the build over a range of foil combinations. This model is used to develop a tool to determine the process settings required to achieve a consistent weld power in builds with different stiffnesses.

Article
Publication date: 7 August 2007

G.D. Janaki Ram, C. Robinson, Y. Yang and B.E. Stucker

Ultrasonic consolidation (UC) is a novel additive manufacturing process developed for fabrication of metallic parts from foils. While the process has been well demonstrated for…

3677

Abstract

Purpose

Ultrasonic consolidation (UC) is a novel additive manufacturing process developed for fabrication of metallic parts from foils. While the process has been well demonstrated for part fabrication in Al alloy 3003, some of the potential strengths of the process have not been fully explored. One of them is its suitability for fabrication of parts in multi‐materials. This work aims to examine this aspect.

Design/methodology/approach

Multi‐material UC experiments were conducted using Al alloy 3003 foils as the bulk part material together with a number of engineering materials (foils of Al‐Cu alloy 2024, Ni‐base alloy Inconel 600® AISI 347 stainless steel, and others). Deposit microstructures were studied to evaluate bonding between various materials.

Findings

It was found that most of the materials investigated can be successfully bonded to alloy Al 3003 and vice versa. SiC fibers and stainless wire meshes were successfully embedded in an Al 3003 matrix. The results suggest that the UC process is quite suitable for fabrication of multi‐material structures, including fiber‐reinforced metal matrix composites.

Originality/value

This work systematically examines the multi‐material capability of the UC process. The findings of this work lay a strong foundation for a wider and more efficient commercial utilization of the process.

Details

Rapid Prototyping Journal, vol. 13 no. 4
Type: Research Article
ISSN: 1355-2546

Keywords

Article
Publication date: 17 May 2021

Vivek Kumar Tiwary, Arunkumar P. and Vinayak R. Malik

Three-dimensional (3D) printing, one of the important technological pillars of Industry 4.0, is changing the landscape of future manufacturing. However, the limited build volume…

Abstract

Purpose

Three-dimensional (3D) printing, one of the important technological pillars of Industry 4.0, is changing the landscape of future manufacturing. However, the limited build volume of a commercially available 3D printer is one inherent constraint, which holds its acceptability by the manufacturing business leaders. This paper aims to address the issue by presenting a novel classification of the possible ways by which 3D-printed parts can be joined or welded to achieve a bigger-sized component.

Design/methodology/approach

A two-step literature review is performed. The first section deals with the past and present research studies related to adhesive bonding, mechanical interlocking, fastening and big area additive manufacturing of 3D printed thermoplastics. In the second section, the literature searches were focused on retrieving details related to the welding of 3D printed parts, specifically related to friction stir welding, friction (spin) welding, microwave and ultrasonic welding.

Findings

The key findings of this review study comprise the present up-to-date research developments, pros, cons, critical challenges and the future research directions related to each of the joining/welding techniques. After reading this study, a better understanding of how and which joining/welding technique to be applied to obtain a bigger volume 3D printed component will be acquired.

Practical implications

The study provides a realistic approach for the joining of 3D printed parts made by the fused deposition modeling (FDM) technique.

Originality/value

This is the first literature review related to joining or welding of FDM-3D printed parts helping the 3D printing fraternity and researchers, thus increasing the acceptability of low-cost FDM printers by the manufacturing business leaders.

Details

Rapid Prototyping Journal, vol. 27 no. 4
Type: Research Article
ISSN: 1355-2546

Keywords

Article
Publication date: 25 January 2023

Kashif Ishfaq, Zafar Abas, M. Saravana Kumar and Muhammad Arif Mahmood

This study aims to outline the current challenges in ultrasonic additive manufacturing (AM). AM has revolutionized manufacturing and offers possible solutions when conventional…

Abstract

Purpose

This study aims to outline the current challenges in ultrasonic additive manufacturing (AM). AM has revolutionized manufacturing and offers possible solutions when conventional techniques reach technological boundaries. Ultrasonic additive manufacturing (UAM) uses mechanical vibrations to join similar or dissimilar metals in three-dimensional assemblies. This hybrid fabrication method got attention due to minimum scrap and near-net-shape products.

Design/methodology/approach

This paper reviews significant UAM areas in process parameters such as pressure force, amplitude, weld speed and temperature. These process parameters used in different studies by researchers are compared and presented in tabular form. UAM process improvements and understanding of microstructures have been reported. This review paper also enlightens current challenges in the UAM process, process improvement methods such as heat treatment methods, foil-to-foil overlap and sonotrode surface roughness to increase the bond quality of welded parts.

Findings

Results showed that UAM could solve various problems and produce net shape products. It is concluded that process parameters such as pressure, weld speed, amplitude and temperature greatly influence weld quality by UAM. Post-weld heat treatment methods have been recommended to optimize the mechanical strength of ultrasonically welded joints process parameters. It has been found that the tension force is vital for the deformation of the pre-machined structures and for the elongation of the foil during UAM bonding. It is recommended to critically investigate the mechanical properties of welded parts with standard test procedures.

Originality/value

This study compiles relevant research and findings in UAM. The recent progress in UAM is presented in terms of material type, process parameters and process improvement, along with key findings of the particular investigation. The original contribution of this paper is to identify the research gaps in the process parameters of ultrasonic consolidation.

Details

Rapid Prototyping Journal, vol. 29 no. 6
Type: Research Article
ISSN: 1355-2546

Keywords

1 – 10 of 951