Search results

1 – 10 of over 18000
Article
Publication date: 13 November 2020

Ji Youjun, K. Vafai, Huijin Xu and Liu Jianjun

This paper aims to establish a mathematical model for water-flooding considering the impact of fluid–solid coupling to describe the process of development for a low-permeability…

Abstract

Purpose

This paper aims to establish a mathematical model for water-flooding considering the impact of fluid–solid coupling to describe the process of development for a low-permeability reservoir. The numerical simulation method was used to analyze the process of injected water channeling into the interlayer.

Design/methodology/approach

Some typical cores including the sandstone and the mudstone were selected to test the permeability and the stress sensitivity, and some curves of the permeability varying with the stress for the cores were obtained to demonstrate the sensitivity of the formation. Based on the experimental results and the software Eclipse and Abaqus, the main injection parameters to reduce the amount of the injected water in flowing into the interlayer were simulated.

Findings

The results indicate that the permeability of the mudstone is more sensitive to the stress than sandstone. The injection rate can be as high as possible on the condition that no crack is activated or a new fracture is created in the development. For the B82 block of Daqing oilfield, the suggested pressure of the production pressure should be around 1–3MPa, this pressure must be gradually reached to get a higher efficiency of water injection and avoid damaging the casing.

Originality/value

This work is beneficial to ensure stable production and provide technical support to the production of low permeability reservoirs containing an interlayer.

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. 31 no. 8
Type: Research Article
ISSN: 0961-5539

Keywords

Article
Publication date: 1 February 2009

M.H Hojjati and A. Sadighi

In a conventional finite element analysis, material properties, dimensions and applied loads are usually defined as deterministic quantities. This simplifying assumption however…

Abstract

In a conventional finite element analysis, material properties, dimensions and applied loads are usually defined as deterministic quantities. This simplifying assumption however, is not true in practical applications. Using statistics in engineering problems enables us to consider the effects of the input variables dispersion on the output parameters in an analysis. This provides a powerful tool for better decision making for more reliable design. In this paper, a probabilistic based design is presented which evaluates the sensitivity of a mechanical model to random input variables. To illustrate the effectiveness of this method, a simple bracket is analyzed for stress‐strain behavior using commercially available finite element software. Young’s modulus, applied pressure and dimensions are considered as random variables with Gaussian distribution and their effects on maximum stress and displacement is evaluated. The finite element results are compared with reliability based theoretical results which show very good agreement. This demonstrates the capability of commercially available software to handle probabilistic approach design.

Details

Multidiscipline Modeling in Materials and Structures, vol. 5 no. 2
Type: Research Article
ISSN: 1573-6105

Keywords

Article
Publication date: 2 May 2017

Jan Karthaus, Simon Steentjes, Nora Leuning and Kay Hameyer

The purpose of this paper is to study the variation of the specific iron loss components of electrical steel sheets when applying a tensile mechanical load below the yield…

Abstract

Purpose

The purpose of this paper is to study the variation of the specific iron loss components of electrical steel sheets when applying a tensile mechanical load below the yield strength of the material. The results provide an insight into the iron loss behaviour of the laminated core of electrical machines which are exposed to mechanical stresses of diverse origins.

Design/methodology/approach

The specific iron losses of electrical steel sheets are measured using a standardised single-sheet tester equipped with a hydraulic pressure cylinder which enables application of a force to the specimen under test. Based on the measured data and a semi-physical description of specific iron losses, the stress-dependency of the iron loss components can be studied.

Findings

The results show a dependency of iron loss components on the applied mechanical stress. Especially for the non-linear loss component and high frequencies, a large variation is observed, while the excess loss component is not as sensitive to high mechanical stresses. Besides, it is shown that the stress-dependent iron loss prediction approximates the measured specific iron losses in an adequate way.

Originality/value

New applications such as high-speed traction drives in electric vehicles require a suitable design of the electrical machine. These applications require particular attention to the interaction between mechanical influences and magnetic behaviour of the machine. In this regard, knowledge about the relation between mechanical stress and magnetic properties of soft magnetic material is essential for an exact estimation of the machine’s behaviour.

Details

COMPEL - The international journal for computation and mathematics in electrical and electronic engineering, vol. 36 no. 3
Type: Research Article
ISSN: 0332-1649

Keywords

Article
Publication date: 3 August 2015

Da-Ke Zhang, Sheng Liang, Yi-Chao Yang and Hai-Tao Zhou

The purpose of this paper is to present a constraint and corresponding algorithm enhancing the evolutionary structural optimization (ESO) method, aiming to circumvent its…

Abstract

Purpose

The purpose of this paper is to present a constraint and corresponding algorithm enhancing the evolutionary structural optimization (ESO) method, aiming to circumvent its structure break down problem in some special cases, such as the tie-beam problem.

Design/methodology/approach

A virtual soft material introduced to an element will change the stiffness of the element and may consequently change the stress distribution of that element and its neighbors. With this property, the virtual stiffness of the selected element is calculated and the threshold of the stress changes is derived. The stress threshold is used to evaluate the role of an element on the load path and therefore decide the contribution of the element to the structure. Adding this checking operation into the original ESO iterations enables validation of element removal.

Findings

The reason for structure break down with the ESO method is that the element removal criterion of ESO only works for certain optimal objectives. It cannot guarantee that the structure does not fail. The proposed operation offers a stronger and stricter constraint condition for ESO’s element removal process, preventing the structure from breaking down in some special cases.

Originality/value

The tests on several examples reported in the literature show that the proposed method has the same ability to achieve an optimum solution as the original ESO methods do, while avoiding incorrect deletion of structurally important elements. The benchmark tie-beam problem is solved successfully with this algorithm. The method can be used in other situations as well.

Details

Engineering Computations, vol. 32 no. 6
Type: Research Article
ISSN: 0264-4401

Keywords

Abstract

Details

Tools and Techniques for Financial Stability Analysis
Type: Book
ISBN: 978-1-78756-846-4

Article
Publication date: 13 May 2024

Feng Zhou, S. S. Lu, B. Jiang and R.G. Song

This study aims to study the formation mechanism of micro-arc oxidation (MAO) coating on AZ31 magnesium alloy and how the annealing process affects its corrosion resistance.

Abstract

Purpose

This study aims to study the formation mechanism of micro-arc oxidation (MAO) coating on AZ31 magnesium alloy and how the annealing process affects its corrosion resistance.

Design/methodology/approach

This study involved immersion experiments, electrochemical experiments and slow strain rate tensile experiments, along with scanning electron microscopy, optical microscopy observation and X-ray diffraction analysis.

Findings

The findings suggest that annealing treatment can refine the grain size of AZ31 magnesium alloy to an average of 6.9 µm at 300°C. The change in grain size leads to a change in conductivity, which affects the performance of MAO coatings. The MAO coating obtained by annealing the substrate at 300°C has smaller pores and porosity, resulting in better adhesion and wear resistance.

Originality/value

The coating acts as a barrier to prevent corrosive substances from entering the substrate. However, the smaller pores and porosity reduce the channels for the corrosive solution to pass through the coating. When the coating cracks or falls off, the corrosive medium and substrate come into direct contact. Smaller and uniform grains have better corrosion resistance.

Details

Anti-Corrosion Methods and Materials, vol. 71 no. 4
Type: Research Article
ISSN: 0003-5599

Keywords

Article
Publication date: 3 April 2017

Izhan Abdullah, Muhammad Nubli Zulkifli, Azman Jalar and Roslina Ismail

The purpose of this paper is to investigate the relationship between microstructure and varied strain rates towards the mechanical properties and deformation behaviour of…

Abstract

Purpose

The purpose of this paper is to investigate the relationship between microstructure and varied strain rates towards the mechanical properties and deformation behaviour of Sn-3.0Ag-0.5Cu (SAC305) lead-free solder wire at room temperature.

Design/methodology/approach

Tensile tests with different strain rates of 1.5 × 10−6, 1.5 × 10−5, 1.5 × 10−4, 1.5 × 10−3, 1.5 × 10−2 and 1.5 × 10−1 s−1 at room temperature of 25°C were carried out on lead-free Sn-3.0Ag-0.5Cu (SAC305) solder wire. Stress-strain curves and mechanical properties such as yield strength, ultimate tensile strength and elongation were determined from the tensile tests. A microstructure analysis was performed by measuring the average grain size and the aspect ratio of the grains.

Findings

It was observed that higher strain rates showed pronounced dynamic recrystallization on the stress-strain curve. The increase in the strain rates also decreased the grain size of the SAC305 solder wire. It was found that higher strain rates had a pronounced effect on changing the deformation or shape of the grain in a longitudinal direction. An increase in the strain rates increased the tensile strength and ductility of the SAC solder wire. The primary deformation mechanism for strain rates below 1.5 × 10−1 s−1 was grain boundary sliding, whereas the deformation mechanism for strain rates of 1.5 × 10−1 s−1 was diffusional creep.

Originality/value

Most of the studies regarding the deformation behaviour of lead-free solder usually consider the effect of the elevated temperature. For the current analysis, the effect of the temperature is kept constant at room temperature to analyze the deformation of lead-free solder wire solely because of changes of strain rates, and this is the originality of this paper.

Details

Soldering & Surface Mount Technology, vol. 29 no. 2
Type: Research Article
ISSN: 0954-0911

Keywords

Book part
Publication date: 23 September 2013

Angela Mazzetti

Leading occupational stress researchers have highlighted the need for more qualitative research to advance our understanding of occupational stress as a complex and dynamic…

Abstract

Leading occupational stress researchers have highlighted the need for more qualitative research to advance our understanding of occupational stress as a complex and dynamic process. However, qualitative research can be challenging particularly when it involves the exploration of emotive issues such as occupational stress. Although research institutions provide ethical guidelines for the protection and support of research participants, much less emphasis is placed on the impact of such research on the researcher. Yet in qualitative studies of occupational stress, participants often display a range of emotions to a researcher who is expected to be both empathetic and professional in his/her conduct. If qualitative researchers are inadequately prepared for the emotions they may experience in the field and poorly supported through the research process, then they may lose confidence and eschew qualitative research in favor of quantitative work thereby maintaining the status quo in occupational stress research. This chapter draws on both the literature on researcher emotion and the author’s own research experience to explore some of the problems encountered by qualitative researchers, and presents a number of recommendations to support qualitative researchers involved in the study of occupational stress.

Details

The Role of Emotion and Emotion Regulation in Job Stress and Well Being
Type: Book
ISBN: 978-1-78190-586-9

Keywords

Article
Publication date: 1 January 1983

Sira Institute, the R & D establishment for scientific and industrial measurement has set up its own company, Ometron Ltd., to manufacture and market products which would not…

Abstract

Sira Institute, the R & D establishment for scientific and industrial measurement has set up its own company, Ometron Ltd., to manufacture and market products which would not otherwise be exploited. Its first product is equipment for studying cyclic stresses by the minute temperature changes which they cause. Peter Hunt, general manager of Ometron, and Martin Webber of Sira who was responsible for the development of the technique, talked to Sensor Review.

Details

Sensor Review, vol. 3 no. 1
Type: Research Article
ISSN: 0260-2288

Article
Publication date: 1 August 1998

Chris Bailey, Daniel Wheeler and Mark Cross

Solder materials are used to provide a connection between electronic components and printed circuit boards (PCBs) using either the reflow or wave soldering process. As a board…

Abstract

Solder materials are used to provide a connection between electronic components and printed circuit boards (PCBs) using either the reflow or wave soldering process. As a board assembly passes through a reflow furnace the solder (initially in the form of solder paste) melts, reflows, then solidifies, and finally deforms between the chip and board. A number of defects may occur during this process such as flux entrapment, void formation, and cracking of the joint, chip or board. These defects are a serious concern to industry, especially with trends towards increasing component miniaturisation and smaller pitch sizes. This paper presents a modelling methodology for predicting solder joint shape, solidification, and deformation (stress) during the assembly process.

Details

Soldering & Surface Mount Technology, vol. 10 no. 2
Type: Research Article
ISSN: 0954-0911

Keywords

1 – 10 of over 18000