Search results

1 – 10 of over 97000
Book part
Publication date: 15 December 1998

A D Mason and A W Woods

We use a combination of continuum and car-following models to explore the potential impact of speed-controls on (i) decreasing travel times at times of congested flow; and (ii…

Abstract

We use a combination of continuum and car-following models to explore the potential impact of speed-controls on (i) decreasing travel times at times of congested flow; and (ii) increasing the safety of motorway flow approaching the site of an accident.

Details

Mathematics in Transport Planning and Control
Type: Book
ISBN: 978-0-08-043430-8

Open Access
Article
Publication date: 18 April 2024

Changhai Tian and Shoushuai Zhang

The design goal for the tracking interval of high-speed railway trains in China is 3 min, but it is difficult to achieve, and it is widely believed that it is mainly limited by…

Abstract

Purpose

The design goal for the tracking interval of high-speed railway trains in China is 3 min, but it is difficult to achieve, and it is widely believed that it is mainly limited by the tracking interval of train arrivals. If the train arrival tracking interval can be compressed, it will be beneficial for China's high-speed railway to achieve a 3-min train tracking interval. The goal of this article is to study how to compress the train arrival tracking interval.

Design/methodology/approach

By simulating the process of dense train groups arriving at the station and stopping, the headway between train arrivals at the station was calculated, and the pattern of train arrival headway was obtained, changing the traditional understanding that the train arrival headway is considered the main factor limiting the headway of trains.

Findings

When the running speed of trains is high, the headway between trains is short, the length of the station approach throat area is considerable and frequent train arrivals at the station, the arrival headway for the first group or several groups of trains will exceed the headway, but the subsequent sets of trains will have a headway equal to the arrival headway. This convergence characteristic is obtained by appropriately increasing the running time.

Originality/value

According to this pattern, there is no need to overly emphasize the impact of train arrival headway on the headway. This plays an important role in compressing train headway and improving high-speed railway capacity.

Details

Railway Sciences, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 2755-0907

Keywords

Article
Publication date: 5 January 2023

Sivaselvan S., Natarajan M., Devadasan S.R. and Sivaram N.M.

Aluminum alloys are applicable in marine and aero fields. Alloys AA5083 and AA6061 are aluminum alloys with different chemical and physical properties. Combination of two…

Abstract

Purpose

Aluminum alloys are applicable in marine and aero fields. Alloys AA5083 and AA6061 are aluminum alloys with different chemical and physical properties. Combination of two dissimilar materials could result in enhanced strength. Generally, dissimilar aluminum alloy joint is made by friction stir welding (FSW) to achieve improved physical properties compared with the parent alloys. The purpose of this research is to develop a new FSW dissimilar material with enhanced properties using AA5083 and AA6061 alloys.

Design/methodology/approach

In this research, FSW joint was made for butt joint configuration using AA5083 and AA6061 aluminum alloys. Cylindrical pin with threaded profile was used to perform the joint. The tool tilting angle was maintained as constant, and the tool rotational speed and the welding speed were varied. Wear performance and mechanical strength of the joint were analyzed.

Findings

The results revealed that the increase of tool rotational speed led to poor wear performance, whereas increase of welding speed showed a better wear performance. Further, the prepared joint was analyzed for different wear parameters such as sliding velocity and applied load. The results displayed that the increase of sliding velocity exhibited low wear rate and the increase of load showed high wear rate.

Originality/value

This work is original and deals with the wear performance of AA5083–AA6061 joint at different tool rotational and welding speeds.

Details

Industrial Lubrication and Tribology, vol. 75 no. 2
Type: Research Article
ISSN: 0036-8792

Keywords

Article
Publication date: 26 March 2024

Anuj Kumar Goel and V.N.A. Naikan

The purpose of this study is to explore the use of smartphone-embedded microelectro-mechanical sensors (MEMS) for accurately estimating rotating machinery speed, crucial for…

Abstract

Purpose

The purpose of this study is to explore the use of smartphone-embedded microelectro-mechanical sensors (MEMS) for accurately estimating rotating machinery speed, crucial for various condition monitoring tasks. Rotating machinery (RM) serves a crucial role in diverse applications, necessitating accurate speed estimation essential for condition monitoring (CM) tasks such as vibration analysis, efficiency evaluation and predictive assessment.

Design/methodology/approach

This research explores the utilization of MEMS embedded in smartphones to economically estimate RM speed. A series of experiments were conducted across three test setups, comparing smartphone-based speed estimation to traditional methods. Rigorous testing spanned various dimensions, including scenarios of limited data availability, diverse speed applications and different smartphone placements on RM surfaces.

Findings

The methodology demonstrated exceptional performance across low and high-speed contexts. Smartphones-MEMS accurately estimated speed regardless of their placement on surfaces like metal and fiber, presenting promising outcomes with a mere 6 RPM maximum error. Statistical analysis, using a two-sample t-test, compared smartphone-derived speed outcomes with those from a tachometer and high-quality (HQ) data acquisition system.

Research limitations/implications

The research limitations include the need for further investigation into smartphone sensor calibration and accuracy in extremely high-speed scenarios. Future research could focus on refining these aspects.

Social implications

The societal impact is substantial, offering cost-effective CM across various industries and encouraging further exploration of MEMS-based vibration monitoring.

Originality/value

This research showcases an innovative approach using smartphone-embedded MEMS for RM speed estimation. The study’s multidimensional testing highlights its originality in addressing scenarios with limited data and varied speed applications.

Details

Sensor Review, vol. 44 no. 2
Type: Research Article
ISSN: 0260-2288

Keywords

Open Access
Article
Publication date: 17 May 2022

Chongyi Chang, Yuanwu Cai, Bo Chen, Qiuze Li and Pengfei Lin

In service, the periodic clashes of wheel flat against the rail result in large wheel/rail impact force and high-frequency vibration, leading to severe damage on the wheelset…

1001

Abstract

Purpose

In service, the periodic clashes of wheel flat against the rail result in large wheel/rail impact force and high-frequency vibration, leading to severe damage on the wheelset, rail and track structure. This study aims to analyze characteristics and dynamic impact law of wheel and rail caused by wheel flat of high-speed trains.

Design/methodology/approach

A full-scale high-speed wheel/rail interface test rig was used for the test of the dynamic impact of wheel/rail caused by wheel flat of high-speed train. With wheel flats of different lengths, widths and depths manually set around the rolling circle of the wheel tread, and wheel/rail dynamic impact tests to the flats in the speed range of 0–400 km/h on the rig were conducted.

Findings

As the speed goes up, the flat induced the maximum of the wheel/rail dynamic impact force increases rapidly before it reaches its limit at the speed of around 35 km/h. It then goes down gradually as the speed continues to grow. The impact of flat wheel on rail leads to 100–500 Hz middle-frequency vibration, and around 2,000 Hz and 6,000 Hz high-frequency vibration. In case of any wheel flat found during operation, the train speed shall be controlled according to the status of the flat and avoid the running speed of 20 km/h–80 km/h as much as possible.

Originality/value

The research can provide a new method to obtain the dynamic impact of wheel/rail caused by wheel flat by a full-scale high-speed wheel/rail interface test rig. The relations among the flat size, the running speed and the dynamic impact are hopefully of reference to the building of speed limits for HSR wheel flat of different degrees.

Details

Railway Sciences, vol. 1 no. 1
Type: Research Article
ISSN: 2755-0907

Keywords

Article
Publication date: 2 October 2018

Qingrui Meng, Zhao Chenghao and Tian Zuzhi

Friction pairs of the hydro-viscous drive speed regulating start device should be designed based on the rated torque. To obtain design basis of the rated torque of the…

Abstract

Purpose

Friction pairs of the hydro-viscous drive speed regulating start device should be designed based on the rated torque. To obtain design basis of the rated torque of the hydro-viscous drive speed regulating start device, studies on effect of torque ratio (a ratio of the load torque to the rated torque) on speed regulating start were carried out theoretically and experimentally.

Design/methodology/approach

Under different torque ratio, the modified Reynolds, the thermal energy and the viscosity-temperature equations were solved simultaneously by using finite element method to reveal variation laws of the oil film load capacity and torque transmission during the starting process. Then, speed regulating start experiments were carried out to study the following performance of the output speed.

Findings

The results show that oil film thickness decreases with the increase of the torque ratio; when oil film thickness is less than 0.05 mm, oil film temperature increases rapidly with the decrease of oil film thickness, which eventually deteriorates performance of the speed regulating start; when the torque ratio decreases to about 0.3, output speed shows a better following performance.

Originality/value

It indicates that, to acquire a better speed regulating start, the rated torque of the hydro-viscous drive speed regulating start device should not be less than three times of the load torque. Achievements of this work provide theoretical basis for optimal design of the friction pairs of the hydro-viscous drive speed regulating start device.

Details

Industrial Lubrication and Tribology, vol. 70 no. 9
Type: Research Article
ISSN: 0036-8792

Keywords

Article
Publication date: 21 June 2011

Qingrui Meng and Youfou Hou

The purpose of this paper is to reveal the effect of working oil temperature, load and starting time on hydro‐viscous drive speed‐regulating start.

Abstract

Purpose

The purpose of this paper is to reveal the effect of working oil temperature, load and starting time on hydro‐viscous drive speed‐regulating start.

Design/methodology/approach

The authors developed an experimental equipment and carried out a number of experiments under different temperatures, load and starting time.

Findings

The results show that both the temperature rise of working oil and the increase of load can induce fluctuations in output speed, but the effect of the working oil temperature rise is more serious; also the longer the starting time is, the more perfectly the output speed can trace the given speed.

Practical implications

It indicates that the working oil temperature should be kept in a certain range by using a cooling device in practical application; and that under this experimental condition, kinematics viscosity of the working oil should be greater than 45 mm2/s under rated working temperature, and the relatively suitable starting time should range from 90 to 120 s.

Originality/value

The paper explains the effect of various factors on speed‐regulating start, and provides the basis for the design and the application of hydro‐viscous drives.

Details

Industrial Lubrication and Tribology, vol. 63 no. 4
Type: Research Article
ISSN: 0036-8792

Keywords

Article
Publication date: 21 January 2021

Hui Li, Hao Li, Rongfeng Zhang, Yi Liu, Shemiao Qi and Heng Liu

The purpose of this paper is to introduce the structure design process of the cantilever spindle with limited installation space and wishing to increase its critical speed.

Abstract

Purpose

The purpose of this paper is to introduce the structure design process of the cantilever spindle with limited installation space and wishing to increase its critical speed.

Design/methodology/approach

In this paper, the finite element method was used to analyze the influence of the supporting stiffness and the structure of the spindle on the critical speed, and then the structure of the spindle was designed; moreover, the experiment was accomplished and the experiment results show that the spindle can work stably.

Findings

Through analyzing the influence of the supporting stiffness and the structure of the spindle on the critical speed, the following conclusions could be obtained: the shape of the first-mode is the bend vibration of the cantilever of the spindle; the first-order critical speed of the spindle gradually decreases with the diameter and length of the cantilever increasing; the first-order critical speed of the spindle increases with the depth and diameter of the blind hole increasing; and the experiment was accomplished and the experiment results show that the spindle can work stably.

Originality/value

In this paper, the finite element method was used to design the spindle of the testing machine, and satisfactory results were obtained. It can provide a theoretical reference for the design of a similar spindle.

Details

Industrial Lubrication and Tribology, vol. 73 no. 2
Type: Research Article
ISSN: 0036-8792

Keywords

Article
Publication date: 1 January 1948

It is now well known among aircraft engineers that the compressibility of the air has an increasingly important effect on the aerodynamic forces as the flight speed rises and…

Abstract

It is now well known among aircraft engineers that the compressibility of the air has an increasingly important effect on the aerodynamic forces as the flight speed rises and approaches the speed of sound. As a result of the development of the gas turbine and other improvements, aircraft speeds have risen very rapidly during the last few years, and compressibility effects are, therefore, of great importance in many new aircraft designs. Unfortunately, the designer is faced with very great difficulties in attempting to predict the behaviour of a new aircraft flying at high speeds. The main reason for this is simply that there is very little systematic knowledge of air flow at high speeds past wings and bodies. A further difficulty arises because many of the methods and ideas which have proved so useful in the design of low speed aircraft may have to be changed completely when high speeds are considered. To mention only one example, it is well known that at low speeds a separation of the boundary layer at the rear of an aerofoil causes an increase of drag, but is not so well known that a separation of the same kind at supersonic speeds causes a reduction of drag (for a given incidence). Because there may be differences as important as this between high and low speeds it is not enough that the designer should merely modify his present methods and ideas to allow for compressibility; he must regard the design problems of high speed flight as completely new ones, and acquire a new scientific background to deal with them. It is important that the designer of high speed aircraft should have a sound knowledge of the fundamental principles of air flow at high speeds. Unfortunately, much of the information which is available on this subject is scattered among a large number of books and reports, and is not easily accessible. Thus there is a great need for a book giving a concise introduction to the subject, to enable the aircraft designer to read and understand the current reports dealing with recent developments, and to provide the scientific background which is so necessary for good design.

Details

Aircraft Engineering and Aerospace Technology, vol. 20 no. 1
Type: Research Article
ISSN: 0002-2667

Article
Publication date: 1 December 1937

B. Lundberg

THE sinking speed of an, aeroplane is defined as the vertical component of the forward velocity in gliding flight. It is easy to show that the sinking speed so defined is included…

Abstract

THE sinking speed of an, aeroplane is defined as the vertical component of the forward velocity in gliding flight. It is easy to show that the sinking speed so defined is included in the general equation of the rate of climb with engine on, the rate of climb being the difference between the “rising speed,” corresponding with the horsepower available, and the sinking speed, which in turn corresponds with the horse‐power required. Thus the sinking speed always plays an important rôle in all conditions of flight and it is the author's opinion that, especially in performance calculations, the use of the quantities rising an,d sinking speed are preferable to the more commonly used power‐quantities.

Details

Aircraft Engineering and Aerospace Technology, vol. 9 no. 12
Type: Research Article
ISSN: 0002-2667

1 – 10 of over 97000