Search results

1 – 10 of over 1000
Article
Publication date: 13 November 2009

Zhang Ming, Nie Hong, Wei Xiao‐hui, Qian Xiaomei and Zhou Enzhi

The purpose of this paper is to introduce a co‐simulation method to study the ground maneuvers of aircraft anti‐skid braking and steering.

6771

Abstract

Purpose

The purpose of this paper is to introduce a co‐simulation method to study the ground maneuvers of aircraft anti‐skid braking and steering.

Design/methodology/approach

A virtual prototype of aircraft is established in the multibody system dynamics software MSC.ADAMS/Aircraft. The anti‐skid braking control model, which adopts the multi‐threshold PID control method with a slip‐velocity‐controlled, pressure‐bias‐modulated (PBM) system, is established in MATLAB/Simulink. EASY5 is used to establish the hydraulic system of nose wheel steering. The ADAMS model is connected to block diagrams of the anti‐skid braking control model in MATLAB/Simulink, and is also connected to the block diagrams of nose wheel steering system model in EASY5, so that the ground maneuvers of aircraft anti‐skid braking and steering are simulated separately.

Findings

Results are presented to investigate the performance of anti‐skid braking system in aircraft anti‐skid simulation. In aircraft steering simulation, the influence of two important parameters on the forces acting on the tires is discussed in detail, and the safe area to prevent aircraft sideslip is obtained.

Originality/value

This paper presents an advanced method to study the ground maneuvers of aircraft anti‐skid braking and steering, and establishes an integrated aircraft model of airframe, landing gear, steering system, and anti‐skid braking system to investigate the interaction of each subsystem via simulation.

Details

COMPEL - The international journal for computation and mathematics in electrical and electronic engineering, vol. 28 no. 6
Type: Research Article
ISSN: 0332-1649

Keywords

Article
Publication date: 13 November 2017

Wei Cao, Jiaxu Wang, Wei Pu, Ying Zhang, Jiqiang Wu, Si Ren and Jianbing Long

Previous studies were mainly focused on profile designation of bearing rollers and lubrication performance without considering roller-races skidding. However, the width of round…

Abstract

Purpose

Previous studies were mainly focused on profile designation of bearing rollers and lubrication performance without considering roller-races skidding. However, the width of round corner, load, rotational speed and some other parameters have significant effects on the roller-races sliding speed. This paper aims to investigate the effect of round corner on lubricating characteristics between the heavily loaded roller and inner race considering skidding and roughness.

Design/methodology/approach

A mixed elastohydrodynamic lubrication (EHL) model which is capable of handling practical cases with 3D machined roughness is combined with the skidding model to investigate the effect of round corner on lubricating characteristics between the heavily loaded roller and inner race.

Findings

The width of round corner and round corner radius have a desirable range under certain operating condition, within which the maximum pressure, stress and maximum flash temperature remain low. The optimized range is sensitive to the operating condition. Roughness and skidding narrow the optimized range of round corner radius. Roughness increases the pressure peak, Mises stress and friction coefficient. At the same time, skidding and roughness have obvious effects on film thickness at the contact center area if the round radius is small.

Research limitations/implications

This paper uses the Harris skidding model that has a relatively bigger error, which is not accurate if the bearing load is less.

Practical implications

This paper unifies the skidding model and mixed EHL model which can be used as a tool for optimization design and lubricating performance analysis of cylindrical roller bearing.

Originality/value

Lubrication analyses for roller bearing are assumed to be pure rolling contact between roller and races in a previous study, which could not reflect the real contact characteristics. The skidding model is merged into a mixed EHL model which can be used as a dynamic tool to analyze the lubricating performance considering the round corner, skidding and roughness.

Details

Industrial Lubrication and Tribology, vol. 69 no. 6
Type: Research Article
ISSN: 0036-8792

Keywords

Article
Publication date: 5 January 2021

Wenliang Zhu, Wenjian Zhu, Shubin Zheng and Na Wu

The purpose of this paper is to develop an improved adhesion model to better reproduce the low adhesion condition of the anti-skid control for rail vehicles under braking…

Abstract

Purpose

The purpose of this paper is to develop an improved adhesion model to better reproduce the low adhesion condition of the anti-skid control for rail vehicles under braking condition.

Design/methodology/approach

In view of the low adhesion characteristics for rail vehicles under braking conditions, the Polach adhesion model was improved based on the sliding power and sliding energy. The wheel–rail low adhesion model suitable for braking condition was given. The analysis of braking anti-skid control under emergency braking condition was carried out through the co-simulation, and compared with the test data; the effectiveness and practicability of the improved low adhesion model were verified.

Findings

The results showed that the improved adhesion model is simple and efficient and the parameters involved are less, and it can be directly applied to the real-time simulation of anti-skid control in the process of train braking.

Originality/value

This paper can provide a theoretical reference for the reasons of change and improvement of adhesion between wheel and rail caused by the adjustment of braking force under anti-skid control, which can fulfill a need to the study of sliding energy on the contact surface, the removal effect of pollutants on the wheel–rail surface and the improvement and recovery of adhesion caused.

Peer review

The peer review history for this article is available at: https://publons.com/publon/10.1108/ILT-07-2020-0244/

Details

Industrial Lubrication and Tribology, vol. 73 no. 3
Type: Research Article
ISSN: 0036-8792

Keywords

Article
Publication date: 1 December 1965

This paper describes the operation of the Hytrol electronic/hydraulic anti‐skid system manufactured by Dunlop Aviation Division under licence from the Hydro‐Aire Division, Crane…

Abstract

This paper describes the operation of the Hytrol electronic/hydraulic anti‐skid system manufactured by Dunlop Aviation Division under licence from the Hydro‐Aire Division, Crane Corporation, Burbank, U.S.A. The first British aircraft to be fitted with this second generation anti‐skid braking system is the British Aircraft Corporation One‐Eleven 400 Series on order for American Airlines.

Details

Aircraft Engineering and Aerospace Technology, vol. 37 no. 12
Type: Research Article
ISSN: 0002-2667

Article
Publication date: 4 May 2020

Yanbin Liu and Zhanli Zhang

This study aims to uncover the influencing mechanism of the tilt angles of the cage pocket walls of the high-speed cylindrical roller bearing on the bearing skidding.

Abstract

Purpose

This study aims to uncover the influencing mechanism of the tilt angles of the cage pocket walls of the high-speed cylindrical roller bearing on the bearing skidding.

Design/methodology/approach

A novel cylindrical roller bearing with the beveled cage pockets was proposed. Using the Hertz contact theory and the elastohydrodynamic and hydrodynamic lubrication formulas, the contact models of the bearing were built. Using the multibody kinematics and the Newton–Euler dynamics theory, a dynamics model of the bearing was established. Using the Runge–Kutta integration method, the dynamics simulations and analysis of the bearing were performed.

Findings

The simulation results show that the effects of the tilt angles of the front and rear walls of the pocket on the bearing skidding are remarkable. Under a 5° tilt angle of the front wall of the pocket and a 10° tilt angle of the rear wall, the bearing skidding can be effectively decreased in the rotational speed range of 10,000-70,000 r/min.

Originality/value

In this paper, a novel cylindrical roller bearing with the beveled cage pockets was proposed; a dynamics model of the bearing was established; the influence mechanism of the tilt angles of the front and rear walls of the pocket on the bearing skidding was investigated, which can provide fundamental theory basis for optimizing the pocket.

Peer review

The peer review history for this article is available at: https://publons.com/publon/10.1108/ILT-01-2020-0035/

Details

Industrial Lubrication and Tribology, vol. 72 no. 7
Type: Research Article
ISSN: 0036-8792

Keywords

Article
Publication date: 4 August 2020

Rameez Khan, Fahad Mumtaz Malik, Abid Raza and Naveed Mazhar

The purpose of this paper is to provide a comprehensive and unified presentation of recent developments in skid-steer wheeled mobile robots (SSWMR) with regard to its control…

Abstract

Purpose

The purpose of this paper is to provide a comprehensive and unified presentation of recent developments in skid-steer wheeled mobile robots (SSWMR) with regard to its control, guidance and navigation for the researchers who wish to study in this field.

Design/methodology/approach

Most of the contemporary unmanned ground robot’s locomotion is based upon the wheels. For wheeled mobile robots (WMRs), one of the prominent and widely used driving schemes is skid steering. Because of mechanical simplicity and high maneuverability particularly in outdoor applications, SSWMR has an advantage over its counterparts. Different prospects of SSWMR have been discussed including its design, application, locomotion, control, navigation and guidance. The challenges pertaining to SSWMR have been pointed out in detail, which will seek the attention of the readers, who are interested to explore this area.

Findings

Relying on the recent literature on SSWMR, research gaps are identified that should be analyzed for the development of autonomous skid-steer wheeled robots.

Originality/value

An attempt to present a comprehensive review of recent advancements in the field of WMRs and providing references to the most intriguing studies.

Details

Industrial Robot: the international journal of robotics research and application, vol. 48 no. 1
Type: Research Article
ISSN: 0143-991X

Keywords

Article
Publication date: 1 September 1955

A landing gear consists of a pair of longitudinal skid members 3,3a mounted for sideways lowering and retraction, and arranged, in the retracted position, to form fairings closing…

Abstract

A landing gear consists of a pair of longitudinal skid members 3,3a mounted for sideways lowering and retraction, and arranged, in the retracted position, to form fairings closing the lower portion 10 of the fuselage. Each skid unit includes a ground‐engaging member 6 attached by links 16, 17, 16a, 17a, and a transverse pin 11 to an upper member 4 supported by lugs 8, 9 secured to a rotatable longitudinal shaft 35. The skid 6 may pivot about the pin 11 under the constraint of rubber‐disk shock absorber 21. The shaft 35 is provided with a torsional shock‐absorber consisting of a scries of rubber annuli 44, the opposite faces of each of which is bonded to a pair of metal disks, one of which has internal teeth engaging splines 36, FIG. 2, on the shaft 35, while the other has external dogs 50, 51, 52 engageable with stops 53, 54, 55 projecting inwardly from a fixed casing 43 to render the shock‐absorber effective against rotation of the shaft 35 in one direction. Each skid unit is operated by a jack 66 which rotates the unit into the vertical position shown in FIG. 3 and in so doing causes abutment of the dogs 50, 51, 52 against the stops 53, 54, 55. Under load outward splaying of the skid units is permitted by pin and slot connections 67,68 between the ends of the jacks 66 and the units under the constraint of the torsional shock‐absorbers.

Details

Aircraft Engineering and Aerospace Technology, vol. 27 no. 9
Type: Research Article
ISSN: 0002-2667

Article
Publication date: 1 January 1968

THE increased landing speeds and weight of modern aircraft have called for considerable development of anti‐skid systems. While better landing aids have widened the range of…

Abstract

THE increased landing speeds and weight of modern aircraft have called for considerable development of anti‐skid systems. While better landing aids have widened the range of operating conditions pilots can handle, runway lengths have not increased by amounts proportional to today's greater weights and landing speeds.

Details

Aircraft Engineering and Aerospace Technology, vol. 40 no. 1
Type: Research Article
ISSN: 0002-2667

Article
Publication date: 25 August 2022

Yanling Zhao and Chuanwang Wu

This paper uses numerical methods to investigate the collision and skidding of rolling elements in a cageless ball bearing. This paper aims to analyse the effects of the…

Abstract

Purpose

This paper uses numerical methods to investigate the collision and skidding of rolling elements in a cageless ball bearing. This paper aims to analyse the effects of the rotational speed and number of rolling elements on the rolling element collision and skidding.

Design/methodology/approach

Based on Hertzian theory and tribological theory, the collision contact model of the rolling element was established. Based on the proposed model, the differential equations of motion of the two degrees of freedom rolling element were constructed. The fourth-order Adams algorithm solved the collision contact force between the rolling elements. The sliding velocity between the rolling element and the inner and outer races was calculated.

Findings

The collision frequency and slip of rolling elements can be reduced by increasing the rotational speed appropriately and reducing the number of rolling elements by one.

Originality/value

The developed model can reveal the collision and slip characteristics of the rolling elements for cageless bearings. This study can provide theoretical guidance for the design and manufacture of cageless ball bearings.

Details

Industrial Lubrication and Tribology, vol. 74 no. 9
Type: Research Article
ISSN: 0036-8792

Keywords

Open Access
Article
Publication date: 12 May 2023

Olivia McDermott, Kevin ODwyer, John Noonan, Anna Trubetskaya and Angelo Rosa

This study aims to improve a construction company's overall project delivery by utilising lean six sigma (LSS) methods combined with building information modelling (BIM) to…

79586

Abstract

Purpose

This study aims to improve a construction company's overall project delivery by utilising lean six sigma (LSS) methods combined with building information modelling (BIM) to design, modularise and manufacture various building elements in a controlled factory environment off-site.

Design/methodology/approach

A case study in a construction company utilised lean six sigma (LSS) methodology and BIM to identify non-value add waste in the construction process and improve sustainability.

Findings

An Irish-based construction company manufacturing modular pipe racks for the pharmaceutical industry utilised LSS to optimise and standardise their off-site manufacturing (OSM) partners process and leverage BIM to design skids which could be manufactured offsite and transported easily with minimal on-site installation and rework required. Productivity was improved, waste was reduced, less energy was consumed, defects were reduced and the project schedule for completion was reduced.

Research limitations/implications

The case study was carried out on one construction company and one construction product type. Further case studies would ensure more generalisability. However, the implementation was tested on a modular construction company, and the methods used indicate that the generic framework could be applied and customized to any offsite company.

Originality/value

This is one of the few studies on implementing offsite manufacturing (OSM) utilising LSS and BIM in an Irish construction company. The detailed quantitative benefits and cost savings calculations presented as well as the use of the LSM methods and BIM in designing an OSM process can be leveraged by other construction organisations to understand the benefits of OSM. This study can help demonstrate how LSS and BIM can aid the construction industry to be more environmentally friendly.

Details

International Journal of Lean Six Sigma, vol. 15 no. 8
Type: Research Article
ISSN: 2040-4166

Keywords

1 – 10 of over 1000