Search results

1 – 10 of 877
Article
Publication date: 10 August 2015

George Sih

Fatigue crack growth rate data for 2024-T3 aluminum are found using three parameters d*, σ* and μ* for short and long cracks for Regions I-III in conventional fatigue. Asymptotic…

Abstract

Purpose

Fatigue crack growth rate data for 2024-T3 aluminum are found using three parameters d*, σ* and μ* for short and long cracks for Regions I-III in conventional fatigue. Asymptotic solution of a line crack with a micro-tip is found to yield a singular stress behavior of order 0.75 in contrast to the 0.50 order known for the macrocrack. The difference is due to the micro-macro interaction effects. The three parameters account for the combined effects of load, material and geometry via the tip region. Data for short and long cracks lie on a straight with a slope of about 3.9-4.8 for R values of 0.286-0.565. The results were based on an initial crack a1 mm where a is the half length for a central crack panel. The paper aims to discuss these issues.

Design/methodology/approach

The belief that specimen fatigue data could assist the design of structural components was upended when FAA discovered that the NASGRO FCGD are not valid for short cracks that are tight and may even be closed. The regular ΔK vs da/dN model was limited to long cracks. The issue become critical for short cracks connecting the long ones of a few mm to cm or even m according to da/dN for the same crack history. The danger of short/long fatigue crack growth (SLFCG) prompted FAA to introduce an added test known as Limit of Validity (LOV), a way of setting empirical limits for structural components. The dual scale SLFCG data from ΔK micro/macro provide support for the LOV tests.

Findings

Data for short and long cracks lie on a straight with a slope of about 3.9-4.8 for R values of 0.286-0.565. The single dual scale relation on ΔK micro/macro can switch from microscopic to macroscopic or vice and versa. The difference is fundamental. Order other than 0.75 can be obtained for simulating different microstructure effects as well as different materials and test conditions.

Originality/value

Scale shifting from short to long fatigue cracks for 2024-T3 aluminum is new. The crack driving force is found to depend on the crack tightness. The sigmoidal curve based on the regular ΔK plot disappeared. The data from ΔK micro/macro for short cracks may supplement the FAA LOV tests for setting more reliable fatigue safe limits.

Details

International Journal of Structural Integrity, vol. 6 no. 4
Type: Research Article
ISSN: 1757-9864

Keywords

Article
Publication date: 6 March 2024

Qiuchen Zhao, Xue Li, Junchao Hu, Yuehui Jiang, Kun Yang and Qingyuan Wang

The purpose of this paper is to determine the ultra-high cycle fatigue behavior and ultra-slow crack propagation behavior of selective laser melting (SLM) AlSi7Mg alloy under…

Abstract

Purpose

The purpose of this paper is to determine the ultra-high cycle fatigue behavior and ultra-slow crack propagation behavior of selective laser melting (SLM) AlSi7Mg alloy under as-built conditions.

Design/methodology/approach

Constant amplitude and two-step variable amplitude fatigue tests were carried out using ultrasonic fatigue equipment. The fracture surface of the failure specimen was quantitatively analyzed by scanning electron microscope (SEM).

Findings

The results show that the competition of surface and interior crack initiation modes leads to a duplex S–N curve. Both manufacturing defects (such as the lack of fusion) and inclusions can act as initially fatal fatigue microcracks, and the fatigue sensitivity level decreases with the location, size and type of the maximum defects.

Originality/value

The research results play a certain role in understanding the ultra-high cycle fatigue behavior of additive manufacturing aluminum alloys. It can provide reference for improving the process parameters of SLM technology.

Details

International Journal of Structural Integrity, vol. 15 no. 2
Type: Research Article
ISSN: 1757-9864

Keywords

Article
Publication date: 1 June 2005

N. Acuña

To study the early stages of damage by corrosion fatigue (CF) in an austenitic stainless steel using the electrochemical noise (EN) Technique.

1018

Abstract

Purpose

To study the early stages of damage by corrosion fatigue (CF) in an austenitic stainless steel using the electrochemical noise (EN) Technique.

Design/methodology/approach

Potential and current transients measured between two nominally identical electrodes during CF of an UNS S31603 SS were continuously monitored using a zero‐resistance‐ammeter at different periods of exposure to seawater. The tests were carried out under cyclic loading of constant amplitude, stress ratio R=0 and load frequency of ω=0.17 Hz. The analysis was focused on both, crack nucleation sites and short fatigue crack growth, and the correlation between corrosion‐fatigue cracking and characteristics of potential transients and the associated intensity current.

Findings

Measurements of EN, showed a good relationship between the potential transients and current fluctuations with the initiation and growth of inter‐granular corrosion‐fatigue cracks. The amplitude and frequency of potential transients and the intensity of current transients became more intense as the number of loading cycles increased. The initiation of crack events and small crack growth could be associated with the noise patterns with amplitudes of 20 and 70 mV and current density between 0.10 and 0.60 μA cm2; while large inter‐granular crack growth events, were due to coalescence of small cracks, and could be associated with patterns of 200 mV in amplitude and a cathodic current density of 8.0 μA cm2. The crack nucleation sites generally were located at grain boundary triple points on the specimen surface.

Originality/value

The EN Technique can be a good alternative to evaluate the early stages of damage by CF.

Details

Anti-Corrosion Methods and Materials, vol. 52 no. 3
Type: Research Article
ISSN: 0003-5599

Keywords

Article
Publication date: 2 September 2021

Lei Fu, Hui Li, Li Lin, Qingyuan Wang, Qi Fan, Xinjie Huang, XiuLan Li, Sheng Lai and Lifei Chen

Most supersonic aircraft were manufactured using 2A70 aluminum alloy. The purpose of this paper is to study the corrosion mechanism and fatigue behavior of an aircraft in a…

Abstract

Purpose

Most supersonic aircraft were manufactured using 2A70 aluminum alloy. The purpose of this paper is to study the corrosion mechanism and fatigue behavior of an aircraft in a semi-industrial atmospheric corrosive environment, alternating effects of corrosion and fatigue were used to simulate the aircraft’s ground parking corrosion and air flight fatigue.

Design/methodology/approach

For this purpose, the aluminum alloy samples were subjected to pre-corrosion and alternating corrosion-fatigue experiments. The failure mechanisms of corrosion and corrosion fatigue were analyzed using microscopic characterization methods of electrochemical testing, X-ray diffraction and scanning electron microscopy. Miner’s linear cumulative damage rule was used to predict the fatigue life of aluminum alloy and to obtain its safe fatigue life.

Findings

The results showed that the corrosion damage caused by the corrosive environment was gradually connected by pitting pits to form denudation pits along grain boundaries. The deep excavation of chloride ions and the presence of intergranular copper-rich phases result in severe intergranular corrosion morphology. During cyclic loading, alternating hardening and softening occurred. The stress concentration caused by surface pitting pits and denudation pits initiated fatigue cracks at intergranular corrosion products. At the same time, the initiation of multiple fatigue crack sources was caused by the corrosion environment and the morphology of the transient fracture zone was also changed, but the crack propagation rate was not basically affected. The polarization curve and impedance analysis results showed that the corrosion rate increases first, decreases and then increases. Fatigue failure behavior was directly related to micro characteristics such as corrosion pits and microcracks.

Originality/value

In this research, alternating effects of corrosion and fatigue were used to simulate the aircraft’s ground parking corrosion and air flight fatigue. To study the corrosion mechanism and fatigue behavior of an aircraft in a semi-industrial atmospheric corrosive environment, the Miner’s linear cumulative damage rule was used to predict the fatigue life of aluminum alloy and to obtain its safe fatigue life.

Details

Anti-Corrosion Methods and Materials, vol. 68 no. 5
Type: Research Article
ISSN: 0003-5599

Keywords

Article
Publication date: 14 August 2017

Vladimir Kobelev

The purpose of this paper is to propose the new dependences of cycles to failure for a given initial crack length upon the stress amplitude in the linear fracture approach. The…

Abstract

Purpose

The purpose of this paper is to propose the new dependences of cycles to failure for a given initial crack length upon the stress amplitude in the linear fracture approach. The anticipated unified propagation function describes the infinitesimal crack-length growths per increasing number of load cycles, supposing that the load ratio remains constant over the load history. Two unification functions with different number of fitting parameters are proposed. On one hand, the closed-form analytical solutions facilitate the universal fitting of the constants of the fatigue law over all stages of fatigue. On the other hand, the closed-form solution eases the application of the fatigue law, because the solution of nonlinear differential equation turns out to be dispensable. The main advantage of the proposed functions is the possibility of having closed-form analytical solutions for the unified crack growth law. Moreover, the mean stress dependence is the immediate consequence of the proposed law. The corresponding formulas for crack length over the number of cycles are derived.

Design/methodology/approach

In this paper, the method of representation of crack propagation functions through appropriate elementary functions is employed. The choice of the elementary functions is motivated by the phenomenological data and covers a broad region of possible parameters. With the introduced crack propagation functions, differential equations describing the crack propagation are solved rigorously.

Findings

The resulting closed-form solutions allow the evaluation of crack propagation histories on one hand, and the effects of stress ratio on crack propagation on the other hand. The explicit formulas for crack length over the number of cycles are derived.

Research limitations/implications

In this paper, linear fracture mechanics approach is assumed.

Practical implications

Shortening of evaluation time for fatigue crack growth. Simplification of the computer codes due to the elimination of solution of differential equation. Standardization of experiments for crack growth.

Originality/value

This paper introduces the closed-form analytical expression for crack length over number of cycles. The new function that expresses the damage growth per cycle is also introduced. This function allows closed-form analytical solution for crack length. The solution expresses the number of cycles to failure as the function of the initial size of the crack and eliminates the solution of the nonlinear ordinary differential equation of the first order. The different common expressions, which account for the influence of the stress ratio, are immediately applicable.

Details

Multidiscipline Modeling in Materials and Structures, vol. 13 no. 2
Type: Research Article
ISSN: 1573-6105

Keywords

Article
Publication date: 5 January 2022

Kai Tan, Victor Postel, Yujia Liu, Dongtong Yang, Sen Tang, Chong Wang and Qingyuan Wang

Mechanical issues related to the information and growth of small cracks are considered to play a major role in very high cycle fatigue (VHCF) for metallic materials. Further…

Abstract

Purpose

Mechanical issues related to the information and growth of small cracks are considered to play a major role in very high cycle fatigue (VHCF) for metallic materials. Further efforts on better understanding in early stage of a crack are beneficial to estimating and preventing catastrophic damage for a long period service.

Design/methodology/approach

Dependent on the ultrasonic loading system, a novel method of in situ photomicroscope is established to study the crack behaviors in VHCF regime.

Findings

This in situ photomicroscope method provides advantages in combination with fatigue damage monitoring at high magnification, a large number of cycles, and efficiency. Visional investigation with attached image proceeding code proves that the method has high resolution on both size and time, which permits reliable accuracy on small crack growth rate. It is observed that the crack propagation trends slower in the overall small crack stage down to the level of 10–11 m/cycle. Strain analysis relays on a real-time recording which is applied by using digital image correlation. Infrared camera recording indicates the method is also suitable for thermodynamic study while growth of damage.

Originality/value

Benefiting from this method, it is more convenient and efficient to study the short crack propagation in VHCF regime.

Details

International Journal of Structural Integrity, vol. 13 no. 2
Type: Research Article
ISSN: 1757-9864

Keywords

Article
Publication date: 30 August 2011

Simon A. Barter

This paper aims to present some aspects associated with the life prediction of structures with fatigue cracks growing from small natural discontinuities in aluminium alloy…

Abstract

Purpose

This paper aims to present some aspects associated with the life prediction of structures with fatigue cracks growing from small natural discontinuities in aluminium alloy (AA)7050‐T7451 for a surface condition that is present in F/A‐18 A/B aircraft critical structure.

Design/methodology/approach

Fatigue results are presented for thick section AA7050 plate coupons loaded with a representative fighter aircraft wing root bending moment loading spectrum. Detailed quantitative fractography (QF) was used to gain a deeper understanding of issues relevant to an improved fatigue life predictive capacity for this material by using the QF results to investigate the “effectiveness” of the fatigue initiating discontinuities.

Findings

Estimates of the “effectiveness” of the fatigue initiating discontinuities as quasi pre‐existing fatigue cracks (“equivalent pre‐crack size” (EPS) here) were made with the aid of a simple crack growth model. This model, based on experience, was found to be valid for the applied spectrum and stress levels used. These stress levels were chosen to represent those that may be found in highly stressed locations of fighter aircraft; and as such would usually lead to the limiting fatigue life of such a structure.

Research limitations/implications

The method has been extended to other crack growth situations and is being used to build a database large enough to determine the best probability distribution of the “effectiveness” of the fatigue initiating discontinuities for not only the surface condition reported here but several other surface conditions typical of aircraft metallic structure.

Practical implications

The EPS of the discontinuities from which the cracks grew were used to investigate distributions that may be used in a risk‐based assessment using deterministic crack growth measurements from such discontinuities. Some of the problems that remain to be resolved in such an analysis, prior to its use in a risk‐based assessment are discussed.

Originality/value

This work improves the understanding of the interaction of small fatigue cracks generated by representative loading spectra with the small discontinuities from which they grow and shows that the fatigue process is remarkably consistent down to very small sizes.

Details

International Journal of Structural Integrity, vol. 2 no. 3
Type: Research Article
ISSN: 1757-9864

Keywords

Article
Publication date: 2 February 2015

A. Krasovskyy and A. Virta

Even though modern welding technology has improved, initial defects on weld notches cannot be avoided. Assuming the existence of crack-like flaws after the welding process, the…

Abstract

Purpose

Even though modern welding technology has improved, initial defects on weld notches cannot be avoided. Assuming the existence of crack-like flaws after the welding process, the stage of a fatigue crack nucleation becomes insignificant and the threshold for the initial crack propagation can be used as a criterion for very high cycle fatigue whereas crack growth analysis can be applied for the lifetime estimation at lower number of cycles. The purpose of this paper is to present a mechanism based approach for lifetime estimation of welded joints, subjected to a multiaxial non-proportional loading.

Design/methodology/approach

The proposed method, which is based on the welding process simulation, thermophysical material modeling and fracture mechanics, considers the most important aspects for fatigue of welds. Applying worst-case assumptions, fatigue limits derived by the weight function method can be then used for the fatigue assessment of complex welded structures.

Findings

An accurate mechanism based method for the fatigue life assessment of welded joints has been presented and validated.

Originality/value

Compared to the fatigue limits provided by design codes, the proposed method offers more accurate lifetime estimation, a better understanding of interactions between welding process and fatigue behavior. It gives more possibilities to optimize the welding process specifically for the considered material, weld type and loading in order to achieve the full cost and weight optimization potential for industrial applications.

Details

International Journal of Structural Integrity, vol. 6 no. 1
Type: Research Article
ISSN: 1757-9864

Keywords

Article
Publication date: 12 March 2020

Tianlai Yu, Linlin Zhang and Zizheng Liu

The fatigue problems of the carriageway slabs of reinforced concrete rib-beam bridges were studied. The analysis of the carriageway slabs could not achieve the actual stress state.

Abstract

Purpose

The fatigue problems of the carriageway slabs of reinforced concrete rib-beam bridges were studied. The analysis of the carriageway slabs could not achieve the actual stress state.

Design/methodology/approach

Based on this characteristic, the reinforced concrete T-beam group structure system was taken as the research object. Four scale models of the carriageway slabs of reinforced concrete ribbed bridges were designed. The fatigue failure modes and actual fatigue resistance of the carriageway slabs with different length-to-side ratios were systematically studied through static load and fatigue experiments. Based on this, the concrete damage plasticity model (CDP model) was combined with numerical simulation analysis to study the influence of the length-to-short-side ratio of the carriageway slab on the fatigue performance and the remaining bearing capacity.

Findings

The results show that the fatigue failure of the carriageway slab is a three-stage failure; the ratio of the long and short sides has a significant effect on the fatigue performance of the carriageway slab. Under the same fatigue load level, the smaller the ratio of the long and short sides of the carriageway slab.

Originality/value

The fatigue resistance of the unidirectional board is significantly lower than that of the bidirectional board. It is recommended to use the bidirectional board in actual engineering design.

Details

International Journal of Structural Integrity, vol. 12 no. 2
Type: Research Article
ISSN: 1757-9864

Keywords

Article
Publication date: 11 March 2014

M. Grujicic, S. Ramaswami, J.S. Snipes, R. Galgalikar, V. Chenna and R. Yavari

Wind energy is one of the most promising and the fastest growing alternative-energy production technologies, which have been developed in response to stricter environmental…

Abstract

Purpose

Wind energy is one of the most promising and the fastest growing alternative-energy production technologies, which have been developed in response to stricter environmental regulations, the depletion of fossil-fuel reserves, and the world's ever-growing energy needs. This form of alternative energy is projected to provide 20 percent of the US energy needs by 2030. For economic reasons, wind turbines (articulated structures that convert wind energy into electrical energy) are expected to operate, with only regular maintenance, for at least 20 years. However, some key wind turbine components (especially the gearbox) tend to wear down, malfunction and fail in a significantly shorter time, often three to five years after installation, causing an increase in the wind-energy cost and in the cost of ownership of the wind turbine. Clearly, to overcome this problem, a significant increase in long-term gearbox reliability needs to be achieved.

Design/methodology/approach

While purely empirical efforts aimed at identifying shortcomings in the current design of the gearboxes are of critical importance, the present work demonstrates that the use of advanced computational engineering analyses, like the finite-element stress analysis and a post-processing fatigue-life assessment analysis, can also be highly beneficial.

Findings

The results obtained in the present work clearly revealed how a variety of normal operating and extreme wind-loading conditions can influence the service-life of a wind-turbine gearbox in the case when the service-life is controlled by the gear-tooth bending-fatigue.

Originality/value

The present work attempts to make a contribution to the resolution of an important problem related to premature-failure and inferior reliability of wind-turbine gearboxes.

Details

International Journal of Structural Integrity, vol. 5 no. 1
Type: Research Article
ISSN: 1757-9864

Keywords

1 – 10 of 877