Search results

1 – 10 of 25
Article
Publication date: 1 July 2006

Jean‐Charles Mare

To develop structured guidelines for the synthesis of dynamic force simulators that are required for the testing of high speed aerospace actuators. To provide realistic and proven…

4326

Abstract

Purpose

To develop structured guidelines for the synthesis of dynamic force simulators that are required for the testing of high speed aerospace actuators. To provide realistic and proven solutions at both test bench hardware and control design levels.

Design/methodology/approach

The state of the art in control design applied to load simulators in mainly based on complex controllers and does not take into account practical considerations. The objective of the present work is to provide generic preliminary design rules to ensure that the test bench architectures (frame, power transmission and control) and the components specifications are consistent with the targeted performance. Once selected the appropriate power transmission architecture, a linear approach is used as a foundation to generate design rules. Then, preliminary design is achieved thanks to the introduction, as early as possible, of the unavoidable technological defects.

Findings

A step‐by‐step methodology allows the designer to select the controller architecture and to specify components with special care to their consistency with the required dynamic performance. The linear then practical approach generates key rules that can be used in the very early phase of the test bench design.

Originality/value

Practical considerations on the components static and dynamic limitations are introduced progressively to make the natural test bench performance as consistent as possible with the performance requirements. Consequently, the controller becomes simpler to design and robust.

Details

Aircraft Engineering and Aerospace Technology, vol. 78 no. 4
Type: Research Article
ISSN: 0002-2667

Keywords

Open Access
Article
Publication date: 13 July 2021

Matteo Davide Lorenzo Dalla Vedova and Pier Carlo Berri

The purpose of this paper is to propose a new simplified numerical model, based on a very compact semi-empirical formulation, able to simulate the fluid dynamics behaviors of an…

1137

Abstract

Purpose

The purpose of this paper is to propose a new simplified numerical model, based on a very compact semi-empirical formulation, able to simulate the fluid dynamics behaviors of an electrohydraulic servovalve taking into account several effects due to valve geometry (e.g. flow leakage between spool and sleeve) and operating conditions (e.g. variable supply pressure or water hammer).

Design/methodology/approach

The proposed model simulates the valve performance through a simplified representation, deriving from the linearized approach based on pressure and flow gains, but able to evaluate the mutual interaction between boundary conditions, pressure saturation and leak assessment. Its performance was evaluated comparing with other fluid dynamics numerical models (a detailed physics-based high-fidelity one and other simplified models available in the literature).

Findings

Although still showing some limitations attributable to its simplified formulation, the proposed model overcomes several deficiencies typical of the most common fluid dynamic models available in the literature, describing the water hammer and the nonlinear dependence of the delivery differential pressure with the spool displacement.

Originality/value

Although still based on a simplified formulation with reduced computational costs, the proposed model introduces a new nonlinear approach that, approximating with suitable precision the pressure-flow fluid dynamic characteristic of a servovalve, overcomes the shortcomings typical of such models.

Details

Aircraft Engineering and Aerospace Technology, vol. 94 no. 1
Type: Research Article
ISSN: 1748-8842

Keywords

Article
Publication date: 1 September 1988

Crucial reductions in aircraft engine operating costs are being made possible by the introduction of electronic fuel control systems. These ‘FADEC’ (Full Authority Digital Engine…

Abstract

Crucial reductions in aircraft engine operating costs are being made possible by the introduction of electronic fuel control systems. These ‘FADEC’ (Full Authority Digital Engine Control) systems make it possible to achieve significant savings in fuel and maintenance costs as well as relieving the overburdened air crew in a critical area of flight management. Moog proportional servovalves are playing a vital role in these advanced control systems.

Details

Aircraft Engineering and Aerospace Technology, vol. 60 no. 9
Type: Research Article
ISSN: 0002-2667

Article
Publication date: 1 January 1990

Moog have been selected to supply three models of their single stage electrohydraulic servovalve for the main fuel control system of the latest European military engine.

Abstract

Moog have been selected to supply three models of their single stage electrohydraulic servovalve for the main fuel control system of the latest European military engine.

Details

Aircraft Engineering and Aerospace Technology, vol. 62 no. 1
Type: Research Article
ISSN: 0002-2667

Article
Publication date: 16 May 2016

Changhong Gao, Dacheng Cong, Xiaochu Liu, Zhidong Yang and Han Tao

The purpose of this paper is to propose a hybrid position/force control scheme using force and vision for docking task of a six degrees of freedom (6-dof) hydraulic parallel…

Abstract

Purpose

The purpose of this paper is to propose a hybrid position/force control scheme using force and vision for docking task of a six degrees of freedom (6-dof) hydraulic parallel manipulator (HPM).

Design/methodology/approach

The vision system consisted of a charge-coupled device (CCD) camera, and a laser distance sensor is used to provide globe relative position information. Also, a force plate is used to measure local contact forces. The proposed controller has an inner/outer loop structure. The inner loop takes charge of tracking command pose signals from outer loop as accurate as possible, while the outer loop generates the desired tracking trajectory according to force and vision feedback information to guarantee compliant docking. Several experiments have been performed to validate the performance of the proposed control scheme.

Findings

Experiment results show that the system has good performance of relative position tracking and compliant contact. In whole docking dynamic experiment, the amplitudes of contact forces are well controlled within 300 N, which can meet perfectly the requirement of the amplitude being not more than 1,000 N.

Originality/value

A hybrid position/force control scheme using force and vision is proposed to make a 6-dof HPM dock with a moving target object compliantly.

Details

Industrial Robot: An International Journal, vol. 43 no. 3
Type: Research Article
ISSN: 0143-991X

Keywords

Article
Publication date: 1 March 1977

Today's industrial robots are a powerful technical means for improving the quality of man's industrial efforts. It is generally agreed that in the next few years the use of these…

Abstract

Today's industrial robots are a powerful technical means for improving the quality of man's industrial efforts. It is generally agreed that in the next few years the use of these machine will become widespread to a very impressive degree with accompanying changes in working conditions and environment. The growth in the use and development of mechanical robots, however, is closely linked to the degree of availability of relaible and suitable electronic control equipment.

Details

Industrial Robot: An International Journal, vol. 4 no. 3
Type: Research Article
ISSN: 0143-991X

Article
Publication date: 2 May 2024

Gerasimos G. Rigatos

To provide high torques needed to move a robot’s links, electric actuators are followed by a transmission system with a high transmission rate. For instance, gear ratios of 100:1…

Abstract

Purpose

To provide high torques needed to move a robot’s links, electric actuators are followed by a transmission system with a high transmission rate. For instance, gear ratios of 100:1 are often used in the joints of a robotic manipulator. This results into an actuator with large mechanical impedance (also known as nonback-drivable actuator). This in turn generates high contact forces when collision of the robotic mechanism occur and can cause humans’ injury. Another disadvantage of electric actuators is that they can exhibit overheating when constant torques have to be provided. Comparing to electric actuators, pneumatic actuators have promising properties for robotic applications, due to their low weight, simple mechanical design, low cost and good power-to-weight ratio. Electropneumatically actuated robots usually have better friction properties. Moreover, because of low mechanical impedance, pneumatic robots can provide moderate interaction forces which is important for robotic surgery and rehabilitation tasks. Pneumatic actuators are also well suited for exoskeleton robots. Actuation in exoskeletons should have a fast and accurate response. While electric motors come against high mechanical impedance and the risk of causing injuries, pneumatic actuators exhibit forces and torques which stay within moderate variation ranges. Besides, unlike direct current electric motors, pneumatic actuators have an improved weight-to-power ratio and avoid overheating problems.

Design/methodology/approach

The aim of this paper is to analyze a nonlinear optimal control method for electropneumatically actuated robots. A two-link robotic exoskeleton with electropneumatic actuators is considered as a case study. The associated nonlinear and multivariable state-space model is formulated and its differential flatness properties are proven. The dynamic model of the electropneumatic robot is linearized at each sampling instance with the use of first-order Taylor series expansion and through the computation of the associated Jacobian matrices. Within each sampling period, the time-varying linearization point is defined by the present value of the robot’s state vector and by the last sampled value of the control inputs vector. An H-infinity controller is designed for the linearized model of the robot aiming at solving the related optimal control problem under model uncertainties and external perturbations. An algebraic Riccati equation is solved at each time-step of the control method to obtain the stabilizing feedback gains of the H-infinity controller. Through Lyapunov stability analysis, it is proven that the robot’s control scheme satisfies the H-infinity tracking performance conditions which indicate the robustness properties of the control method. Moreover, global asymptotic stability is proven for the control loop. The method achieves fast convergence of the robot’s state variables to the associated reference trajectories, and despite strong nonlinearities in the robot’s dynamics, it keeps moderate the variations of the control inputs.

Findings

In this paper, a novel solution has been proposed for the nonlinear optimal control problem of robotic exoskeletons with electropneumatic actuators. As a case study, the dynamic model of a two-link lower-limb robotic exoskeleton with electropneumatic actuators has been considered. The dynamic model of this robotic system undergoes first approximate linearization at each iteration of the control algorithm around a temporary operating point. Within each sampling period, this linearization point is defined by the present value of the robot’s state vector and by the last sampled value of the control inputs vector. The linearization process relies on first-order Taylor series expansion and on the computation of the associated Jacobian matrices. The modeling error which is due to the truncation of higher-order terms from the Taylor series is considered to be a perturbation which is asymptotically compensated by the robustness of the control algorithm. To stabilize the dynamics of the electropneumatically actuated robot and to achieve precise tracking of reference setpoints, an H-infinity (optimal) feedback controller is designed. Actually, the proposed H-infinity controller for the model of the two-link electropneumatically actuated exoskeleton achieves the solution of the associated optimal control problem under model uncertainty and external disturbances. This controller implements a min-max differential game taking place between: (i) the control inputs which try to minimize a cost function which comprises a quadratic term of the state vector’s tracking error and (ii) the model uncertainty and perturbation inputs which try to maximize this cost function. To select the stabilizing feedback gains of this H-infinity controller, an algebraic Riccati equation is being repetitively solved at each time-step of the control method. The global stability properties of the H-infinity control scheme are proven through Lyapunov analysis.

Research limitations/implications

Pneumatic actuators are characterized by high nonlinearities which are due to air compressibility, thermodynamics and valves behavior and thus pneumatic robots require elaborated nonlinear control schemes to ensure their fast and precise positioning. Among the control methods which have been applied to pneumatic robots, one can distinguish differential geometric approaches (Lie algebra-based control, differential flatness theory-based control, nonlinear model predictive control [NMPC], sliding-mode control, backstepping control and multiple models-based fuzzy control). Treating nonlinearities and fault tolerance issues in the control problem of robotic manipulators with electropneumatic actuators has been a nontrivial task.

Practical implications

The novelty of the proposed control method is outlined as follows: preceding results on the use of H-infinity control to nonlinear dynamical systems were limited to the case of affine-in-the-input systems with drift-only dynamics. These results considered that the control inputs gain matrix is not dependent on the values of the system’s state vector. Moreover, in these approaches the linearization was performed around points of the desirable trajectory, whereas in the present paper’s control method the linearization points are related with the value of the state vector at each sampling instance as well as with the last sampled value of the control inputs vector. The Riccati equation which has been proposed for computing the feedback gains of the controller is novel, so is the presented global stability proof through Lyapunov analysis. This paper’s scientific contribution is summarized as follows: (i) the presented nonlinear optimal control method has improved or equally satisfactory performance when compared against other nonlinear control schemes that one can consider for the dynamic model of robots with electropneumatic actuators (such as Lie algebra-based control, differential flatness theory-based control, nonlinear model-based predictive control, sliding-mode control and backstepping control), (ii) it achieves fast and accurate tracking of all reference setpoints, (iii) despite strong nonlinearities in the dynamic model of the robot, it keeps moderate the variations of the control inputs and (iv) unlike the aforementioned alternative control approaches, this paper’s method is the only one that achieves solution of the optimal control problem for electropneumatic robots.

Social implications

The use of electropneumatic actuation in robots exhibits certain advantages. These can be the improved weight-to-power ratio, the lower mechanical impedance and the avoidance of overheating. At the same time, precise positioning and accurate execution of tasks by electropneumatic robots requires the application of elaborated nonlinear control methods. In this paper, a new nonlinear optimal control method has been developed for electropneumatically actuated robots and has been specifically applied to the dynamic model of a two-link robotic exoskeleton. The benefit from using this paper’s results in industrial and biomedical applications is apparent.

Originality/value

A comparison of the proposed nonlinear optimal (H-infinity) control method against other linear and nonlinear control schemes for electropneumatically actuated robots shows the following: (1) Unlike global linearization-based control approaches, such as Lie algebra-based control and differential flatness theory-based control, the optimal control approach does not rely on complicated transformations (diffeomorphisms) of the system’s state variables. Besides, the computed control inputs are applied directly on the initial nonlinear model of the electropneumatic robot and not on its linearized equivalent. The inverse transformations which are met in global linearization-based control are avoided and consequently one does not come against the related singularity problems. (2) Unlike model predictive control (MPC) and NMPC, the proposed control method is of proven global stability. It is known that MPC is a linear control approach that if applied to the nonlinear dynamics of the electropneumatic robot, the stability of the control loop will be lost. Besides, in NMPC the convergence of its iterative search for an optimum depends on initialization and parameter values selection and consequently the global stability of this control method cannot be always assured. (3) Unlike sliding-mode control and backstepping control, the proposed optimal control method does not require the state-space description of the system to be found in a specific form. About sliding-mode control, it is known that when the controlled system is not found in the input-output linearized form the definition of the sliding surface can be an intuitive procedure. About backstepping control, it is known that it cannot be directly applied to a dynamical system if the related state-space model is not found in the triangular (backstepping integral) form. (4) Unlike PID control, the proposed nonlinear optimal control method is of proven global stability, the selection of the controller’s parameters does not rely on a heuristic tuning procedure, and the stability of the control loop is assured in the case of changes of operating points. (5) Unlike multiple local models-based control, the nonlinear optimal control method uses only one linearization point and needs the solution of only one Riccati equation so as to compute the stabilizing feedback gains of the controller. Consequently, in terms of computation load the proposed control method for the electropneumatic actuator’s dynamics is much more efficient.

Details

Robotic Intelligence and Automation, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 2754-6969

Keywords

Article
Publication date: 1 May 1979

The Paris/Le Bourget International Air and Space Show is the world's oldest international show and is of considerable importance. It will have 548 exhibitors from 23 countries and…

Abstract

The Paris/Le Bourget International Air and Space Show is the world's oldest international show and is of considerable importance. It will have 548 exhibitors from 23 countries and there will be 165,000 square metres of display area — with 10,000 square metres for the out‐door static exhibits. The numbers of chalets is to be increased by 55.

Details

Aircraft Engineering and Aerospace Technology, vol. 51 no. 5
Type: Research Article
ISSN: 0002-2667

Article
Publication date: 1 February 1996

Terry Ford

Compares the features of the 1995 Boeing 777 with its predecessors, highlighting the increased use of digital technology. Emphasizes the much improved reliability of the on‐board…

Abstract

Compares the features of the 1995 Boeing 777 with its predecessors, highlighting the increased use of digital technology. Emphasizes the much improved reliability of the on‐board maintenance system and describes the sophisticated built‐in fault reporting and test capabilities.

Details

Aircraft Engineering and Aerospace Technology, vol. 68 no. 2
Type: Research Article
ISSN: 0002-2667

Keywords

Article
Publication date: 1 June 1972

RICHARD A. EVANS and G.W. FOSDICK

A SIGNIFICANT NUMBER of the helicopters presently in the US Army inventory are inherently unstable and use pressurised hydraulic fluid in the hydromechanical flight control…

Abstract

A SIGNIFICANT NUMBER of the helicopters presently in the US Army inventory are inherently unstable and use pressurised hydraulic fluid in the hydromechanical flight control system. The development of a hydrofluidic stability‐augmentation system which can be integrated into the helicopter primary control system, offering promise of improved reliability, maintainability, and reduced cost over conventional electromechanical stability augmentation systems, has been accomplished.

Details

Aircraft Engineering and Aerospace Technology, vol. 44 no. 6
Type: Research Article
ISSN: 0002-2667

1 – 10 of 25