Search results

1 – 10 of 252
Article
Publication date: 7 December 2021

Santosh Kumar Karri, Markandeya Raju Ponnada and Lakshmi Veerni

One of the sources for the increase in the carbon footprint on the earth is the manufacturing of cement, which causes a severer environmental impact. Abundant research is going on…

Abstract

Purpose

One of the sources for the increase in the carbon footprint on the earth is the manufacturing of cement, which causes a severer environmental impact. Abundant research is going on to diminish CO2 content in the atmosphere by appropriate utilization of waste by-products of industries. Alkali-activated slag concrete (AASC) is an innovative green new concrete made by complete replacement of cement various supplementary cementitious raw materials. Concrete is a versatile material used in different fields of structures, so it is very important to study the durability in different exposures along with the strength. The purpose of this paper is to study the performance of AASC by incorporating quartz sand as fine aggregate under different exposure conditions.

Design/methodology/approach

The materials for this innovative AASC are selected based on preliminary studies and literature surveys. Based on numerous trials a better performance mix proportion of AASC with quartz sand is developed with 1:2:4 mix proportion, 0.8 alkali Binder ratio, 19 M of NaOH and 50% concentration of Na2SiO3. Subsequently, AASC cubes are prepared and exposed for 3, 7, 14, 28, 56, 90, 112, 180, 252 and 365 days in ambient, acid, alkaline, sulfate, chloride and seawater and tested for compressive strength. In addition, to study the microstructural characteristics, scanning electron microscope (SEM), energy dispersive X-ray analysis and X-ray diffraction analysis was also performed.

Findings

Long-term performance of AASC developed with quartz sand is very good in the ambient, alkaline environment of 5% NaOH and seawater with the highest compressive strength values of 51.8, 50.83 and 64.46, respectively. A decrease in compressive strengths was observed after the age of 14, 56 and 112 days for acid, chloride and sulfate exposure conditions, respectively. SEM image shows a denser microstructure of AASC matrix for ambient, alkaline of 5% NaOH and seawater.

Research limitations/implications

The proposed AASC is prepared with a mix proportion of 1:2:4, so the other proportions of AASC need to verify. In general plain, AASC is not used in practice except in few applications, in this work the effect of reinforced AASC is not checked. The real environmental exposure in fields may not create for AASC, as it was tested in different exposure conditions in the laboratory.

Practical implications

The developed AASC is recommended in practical applications where early strength is required, where the climate is hot, where water is scarce for curing, offshore and onshore constructions exposed to the marine environment and alkaline environment industries like breweries, distilleries and sewage treatment plants. As AASC is recommended for ambient air and in other exposures, its implementation as a construction material will reduce the carbon footprint.

Originality/value

The developed AASC mix proportion 1:2:4 is an economical mix, because of low binder content, but it exhibits a higher early age compressive strength value of 45.6 MPa at the age of 3 days. The compressive strength increases linearly with age from 3 to 365 days when exposed to seawater and ambient air. The performance of AASC is very good in the ambient, alkaline environment and seawater compared to other exposure conditions.

Details

Journal of Engineering, Design and Technology , vol. 22 no. 1
Type: Research Article
ISSN: 1726-0531

Keywords

Article
Publication date: 10 October 2018

Tugdual Amaury Le Néel, Pascal Mognol and Jean-Yves Hascoët

The purpose of this paper is to analyze the current state of the art manufacturing techniques using sand molds for the casting industry by the means of additive manufacturing…

1617

Abstract

Purpose

The purpose of this paper is to analyze the current state of the art manufacturing techniques using sand molds for the casting industry by the means of additive manufacturing (AM). In particular, this review will cover two families of 3D printing in regards to sand mold fabrication.

Design/methodology/approach

This paper will discuss the sand casting manufacturing processes of AM by binder jetting (3D printing) and selective laser sintering. Scientific articles, patents and case studies are analyzed. Topics ranging from the technology types to the economic implications are covered.

Findings

The review investigates new factors and methods for mold design, looking at mechanical properties and cost analysis as influenced by material selection, thermal characteristics, topological optimization and manufacturing procedure. Findings in this study suggest that this topic lacks vigorous scientific research and that the case studies by manufacturers thus far are not useful.

Research limitations/implications

As demonstrated by the limited data from previous published studies, a more comprehensive and conclusive analysis is needed due to the lack of interest and resources regarding the AM of sand molds.

Practical implications

This study is a useful tool for any researchers with an interest in the field of AM of sand molds.

Social implications

Key perspectives are proposed.

Originality/value

This review highlights current gaps in this field. The review goes beyond the scientific articles by curating patents and professional case studies.

Details

Rapid Prototyping Journal, vol. 24 no. 8
Type: Research Article
ISSN: 1355-2546

Keywords

Article
Publication date: 1 June 1997

Saher Shawki and Z. Abdel Hamid

Electrodeposited Ni‐P composite coatings incorporating a variety of inorganic particles were obtained from Watt’s nickel bath containing sodium hypophosphite. The mechanism of…

Abstract

Electrodeposited Ni‐P composite coatings incorporating a variety of inorganic particles were obtained from Watt’s nickel bath containing sodium hypophosphite. The mechanism of co‐deposition of various particles (SiC, Al2O3, quartz and sand) was studied in view of the electro‐kinetic charge characterizing the solid particles. Means to improve the mobility of the particles in the plating solution were investigated using sodium oleate as surface active agent. The purpose was to increase particle content in the coating to attain high hardness values. Special attention was given to the deposition process using SiC particles. The surface morphology, hardness and wear resistance of the composite coatings were determined. Hardness values were maximized by simple heat treatment in air atmosphere which led to the precipitation of the hard Ni3P phase. Sound, coherent and high wear resistance coatings could be produced.

Details

Anti-Corrosion Methods and Materials, vol. 44 no. 3
Type: Research Article
ISSN: 0003-5599

Keywords

Article
Publication date: 12 October 2010

S. Fore and C.T. Mbohwa

The purpose of the paper is to illustrate application of the cleaner production concept so as to incorporate environmental protection into business performance. The study analyses…

1621

Abstract

Purpose

The purpose of the paper is to illustrate application of the cleaner production concept so as to incorporate environmental protection into business performance. The study analyses areas pertaining to the foundry industry that impact negatively on the environment leading to unsustainable resource utilisation and suggests options for promoting sustainable development within the industry, with specific focus on a foundry in a lower income country (LIC).

Design/methodology/approach

Data were collected using the cleaner production (CP) Methodology. Pre‐assessment and assessment was carried out and options generated. The options included both low cost and capital intensive approaches.

Findings

The paper finds that the CP approach adopted provides clear guidance for generating options and can be used as a practical basis for managerial decision making and policy formulation. Of major concern is resource depletion and pollution associated with the foundry processes. Used resin sand contains toxic chemicals cause leaching and as such, reclamation of resin sand is suggested. There is need for low income countries (LIC's) to identify the best available technologies (BAT's) that are available within the foundry industry and take these aboard or better still improve on them.

Research limitations/implications

This research developed environmental options that can be applied in the foundry industry. However, it can be said that the findings may have limited global application since the analysis was carried out at one Foundry Company.

Practical implications

The paper focuses on a single foundry factory, since the case study approach was used. As such, environmental indicators and options may vary, since the processes from one foundry to another are bound to differ.

Originality/value

This paper is an attempt at combining theoretical and practical ideas to cover the scope of sustainable manufacturing in the setting of a developing country with a view to identify the lessons that can be learnt and to identify the points of departure when compared with studies done elsewhere. The work informs cleaner production assessment at any level, with a focus of production experiences in the foundry industry in a lower technology, developing economy that is less industrialized. The paper establishes a framework of options that can be applied in the foundry industry and other pollution‐intensive industries.

Details

Journal of Engineering, Design and Technology, vol. 8 no. 3
Type: Research Article
ISSN: 1726-0531

Keywords

Article
Publication date: 13 October 2020

Zoi G. Ralli and Stavroula J. Pantazopoulou

Important differentiating attributes in the procedures used, the characteristic mineral composition of the binders, and the implications these have on the final long term…

Abstract

Purpose

Important differentiating attributes in the procedures used, the characteristic mineral composition of the binders, and the implications these have on the final long term stability and physico-mechanical performance of the concretes produced are identified and discussed, with the intent to improve transparency and clarity in the field of geopolymer concrete technologies.

Design/methodology/approach

This state-of-the-art review covers the area of geopolymer concrete, a class of sustainable construction materials that use a variety of alternative powders in lieu of cement for composing concrete, most being a combination of industrial by-products and natural resources rich in specific required minerals. It explores extensively the available essential materials for geopolymer concrete and provides a deeper understanding of its underlying chemical mechanisms.

Findings

This is a state-of-the-art review introducing the essential characteristics of alternative powders used in geopolymer binders and the effectiveness these have on material performance.

Practical implications

With the increase of need for alternative cementitious materials, identifying and understanding the critical material components and the effect they may have on the performance of the resulting mixes in fresh as well as hardened state become a critical requirement to for short- and long-term quality control (e.g. flash setting, efflorescence, etc.).

Originality/value

The topic explored is significant in the field of sustainable concrete technologies where there are several parallel but distinct material technologies being developed, such as geopolymer concrete and alkali-activated concrete. Behavioral aspects and results are not directly transferable between the two fields of cementitious materials development, and these differences are explored and detailed in the present study.

Details

International Journal of Structural Integrity, vol. 12 no. 4
Type: Research Article
ISSN: 1757-9864

Keywords

Article
Publication date: 1 February 1987

Silica extender pigments obtained from natural sources have been used in various coating systems for some time. A review of the microcrystalline silicas available to the paint…

Abstract

Silica extender pigments obtained from natural sources have been used in various coating systems for some time. A review of the microcrystalline silicas available to the paint formulator is included for reference purposes. Cost reduction and sheen control were recognised as attributes of ground natural silica. Properties of the finer or micronised natural silicas, such as lower pigment abrasion and low oil absorption, are covered to indicate potential contributions to the traditional or conventional as well as new coating systems.

Details

Pigment & Resin Technology, vol. 16 no. 2
Type: Research Article
ISSN: 0369-9420

Article
Publication date: 13 December 2021

Recep Demirsöz, Mehmet Erdi Korkmaz, Munish Kumar Gupta, Alberto Garcia Collado and Grzegorz M. Krolczyk

The main purpose of this work is to explore the erosion wear characteristics of additively manufactured aluminium alloy. Additive manufacturing (AM), also known as…

Abstract

Purpose

The main purpose of this work is to explore the erosion wear characteristics of additively manufactured aluminium alloy. Additive manufacturing (AM), also known as three-dimensional (3D) manufacturing, is the process of manufacturing a part designed in a computer environment using different types of materials such as plastic, ceramic, metal or composite. Similar to other materials, aluminum alloys are also exposed to various wear types during operation. Production efficiency needs to be aware of its reactions to wearing mechanisms.

Design/methodology/approach

In this study, quartz sands (SiO2) assisted with oxide ceramics were used in the slurry erosion test setup and its abrasiveness on the AlSi10Mg aluminum alloy material produced by the 3D printer as selective laser melting (SLM) technology was investigated. Quartz was sieved with an average particle size of 302.5 µm, and a slurry environment containing 5, 10 and 15% quartz by weight was prepared. The experiments were carried out at the velocity of 1.88 (250 rpm), 3.76 (500 rpm) and 5.64 m/s (750 rpm) and the impact angles 15, 45 and 75°.

Findings

With these experimental studies, it has been determined that the abrasiveness of quartz sand prepared in certain particle sizes is directly related to the particle concentration and particle speed, and that the wear increases with the increase of the concentration and rotational speed. Also, the variation of weight loss and surface roughness of the alloy was investigated after different wear conditions. Surface roughness values at 750 rpm speed, 10% concentration and 75° impingement angle are 0.32 and 0.38 µm for 0 and 90° samples, respectively, with a difference of approximately 18%. Moreover, concerning a sample produced at 0°, the weight loss at 250 rpm at 10% concentration and 45° particle impact angle is 32.8 mg, while the weight loss at 500 rpm 44.4 mg, and weight loss at 750 rpm is 104 mg. Besides, the morphological structures of eroded surfaces were examined using the scanning electron microscope to understand the wear mechanisms.

Originality/value

The researchers verified that this specific coating condition increases the slurry wear resistance of the mentioned steel. There are many studies about slurry wear tests; however, there is no study in the literature about the quartz sand (SiO2) assisted slurry-erosive wear of AlSi10Mg alloy produced with AM by using SLM technology. This study is needed to fill this gap in the literature and to examine the erosive wear capability of this current material in different environments. The novelty of the study is the use of SiO2 quartz sands assisted by oxide ceramics in different concentrations for the slurry erosion test setup and the investigations on erosive wear resistance of AlSi10Mg alloy manufactured by AM.

Details

Rapid Prototyping Journal, vol. 28 no. 5
Type: Research Article
ISSN: 1355-2546

Keywords

Article
Publication date: 13 June 2016

Sayed M. Derakhshani, Dingena L. Schott and Gabriel Lodewijks

The macroscopic properties of dried sand can be correctly modelled when the accurate determination of the microscopic properties is available. The microscopic properties between…

359

Abstract

Purpose

The macroscopic properties of dried sand can be correctly modelled when the accurate determination of the microscopic properties is available. The microscopic properties between the particles such as the coefficients of rolling (µ r) and sliding (µ s), are numerically determined in two different ways: with and without considering the fluid effect. In an earlier study, the microscopic properties were determined by discrete element method (DEM) and without considering the air effect on the macroscopic properties such as the Angle of Repose. The purpose of this paper is to recalibrate the microscopic properties through a coupling between the DEM and computational fluid dynamics (CFD).

Design/methodology/approach

The first step is dedicated to the calibration of the CFD-DEM model through modelling a single particle sedimentation within air, water, and silicon oil. The voidage and drag models, the grid size ratio (D/dx), the domain size ratio (W/D), and the optimum coupling interval between the CFD and DEM were investigated through comparing the CFD-DEM results with the analytical solution and experimental data. The next step is about modelling an Hourglass with the calibrated CFD-DEM model to recalibrate the µ r and µ s of dried sand particles.

Findings

It was concluded that the air has a minor effect on the macroscopic properties of the dried sand and the µ r and µ s that were obtained with the DEM can be utilized in the CFD-DEM simulation.

Originality/value

Utilizing the granulometry of dried quartz sand in the calibration process of the CFD-DEM method has raised the possibility of using the µ r and µ s for other applications in future studies.

Details

Engineering Computations, vol. 33 no. 4
Type: Research Article
ISSN: 0264-4401

Keywords

Expert briefing
Publication date: 6 January 2023

The trade bans have not thus far affected production of commodities critical to the manufacturing process, such as high-purity quartz (HPQ). Development and mining of this mineral…

Open Access
Article
Publication date: 15 November 2022

Zhiqiang Zhang, Xingyu Zhu and Ronghua Wei

Large displacement misalignment under the action of active faults can cause complex three-dimensional deformation in subway tunnels, resulting in severe damage, distortion and…

Abstract

Purpose

Large displacement misalignment under the action of active faults can cause complex three-dimensional deformation in subway tunnels, resulting in severe damage, distortion and misalignment. There is no developed system of fortification and related codes to follow. There are scientific problems and technical challenges in this field that have never been encountered in past research and practices.

Design/methodology/approach

This paper adopted a self-designed large-scale active fault dislocation simulation loading system to conduct a similar model test of the tunnel under active fault dislocation based on the open-cut tunnel project of the Urumqi Rail Transit Line 2, which passes through the Jiujiawan normal fault. The test simulated the subway tunnel passing through the normal fault, which is inclined at 60°. This research compared and analyzed the differences in mechanical behavior between two types of lining section: the open-cut double-line box tunnel and the modified double-line box arch tunnel. The structural response and failure characteristics of the open-cut segmented lining of the tunnel under the stick-slip part of the normal fault were studied.

Findings

The results indicated that the double-line box arch tunnel improved the shear and longitudinal bending performance. Longitudinal cracks were mainly distributed in the baseplate, wall foot and arch foot, and the crack position was basically consistent with the longitudinal distribution of surrounding rock pressure. This indicated that the longitudinal cracks were due to the large local load of the cross-section of the structure, leading to an excessive local bending moment of the structure, which resulted in large eccentric failure of the lining and formation of longitudinal cracks. Compared with the ordinary box section tunnel, the improved double-line box arch tunnel significantly reduced the destroyed and damage areas of the hanging wall and footwall. The damage area and crack length were reduced by 39 and 59.3%, respectively. This indicates that the improved double-line box arch tunnel had good anti-sliding performance.

Originality/value

This paper adopted a self-designed large-scale active fault dislocation simulation loading system to conduct a similar model test of the tunnel under active fault dislocation. This system increased the similarity ratio of the test model, improved the dislocation loading rate and optimized the simulation scheme of the segmented flexible lining and other key factors affecting the test. It is of great scientific significance and engineering value to investigate the structure of subway tunnels under active fault misalignment, to study its force characteristics and damage modes, and to provide a technical reserve for the design and construction of subway tunnels through active faults.

Details

Railway Sciences, vol. 1 no. 2
Type: Research Article
ISSN: 2755-0907

Keywords

1 – 10 of 252