Search results

1 – 3 of 3
Article
Publication date: 14 November 2012

S. Devendra, K. Verma and P. Barhai

Rapid advancements in nanotechnology are going to bring radical changes in the society and particularly in wireless communication where small, smart and speedy systems are…

Abstract

Rapid advancements in nanotechnology are going to bring radical changes in the society and particularly in wireless communication where small, smart and speedy systems are everyone's first choice. This is possible as application of nanotechnology is taking place in WiMAX/WiFi and other wireless communication systems, which is ‘State-of-the-Art’ technology at the moment. Evolution of microelectronics towards miniaturization is one of the main motivations for nanotechnology. The continued improvements in miniaturization, speed and power reduction in information processing devices, sensors, displays, logic devices, storage devices, transmission devices, etc. will bring another technical revolution, which will change our life. In our research work, we would like to focus on design and development of programmable frequency synthesizer for WiMAX/WiFi wireless communication (to the scale of < 50 nanometer). The transceiver will support fixed, portable, and mobile WiMAX operation. The design strategies focus on maximum operating frequency, low power consumption, low voltage operation, minimize number of gates/transistors, CMOS Technology (< 50 nanometer), reduced fabrication cost, high speed applications in WiMAX/WiFi/Satellite communications, flexibility, programmability, and service efficiency. The proposed ‘Programmable frequency synthesizer will be a new device with its varied application for WiMAX/WiFi/Satellite and other wireless communication systems. The transceiver will support fixed, portable, and mobile WiMAX operation.

Details

World Journal of Engineering, vol. 9 no. 5
Type: Research Article
ISSN: 1708-5284

Keywords

Article
Publication date: 16 August 2011

Mumin Sahin and Ceyhun Sevil

The aim is to provide detailed mechanical and metallurgical examinations of ion‐nitrided austenitic‐stainless steels.

Abstract

Purpose

The aim is to provide detailed mechanical and metallurgical examinations of ion‐nitrided austenitic‐stainless steels.

Design/methodology/approach

Austenitic‐stainless steel was the material chosen for the present study. Ion nitriding process was applied to fatigue and tensile samples prepared by machining. Process temperature was 550°C and treatment time period 24 and 60 h. Then, tensile, fatigue, notch‐impact, hardness tests were applied and metallographic examinations were performed.

Findings

High temperature and longer treatment by ion nitriding decreased fatigue and tensile strengths together with notch‐impact toughness. Scanning electron microscopy and energy dispersive X‐ray spectroscopy analysis revealed formation of nitrides on the sample surfaces. Surface hardness increased with an increase in process time due to diffusion of nitrogen during ion nitriding.

Research limitations/implications

It would be interesting to search the different temperature and time intervals of the ion nitriding. It could be a good idea if future work could be concentrated on ion nitriding on welded stainless steels.

Practical implications

Surfaces of mechanical parts are exposed to higher stress and abrasive forces compared to inside mechanical parts during the time period that mechanical components carry out their expected functions. When stresses and forces exceed the surface strength limit of the material, cracks begin to form at the material surface leading to abrasion and corrosion. Therefore, surface strength of materials needs to be increased to provide a longer service life. Ion (plasma) nitriding is a possible remedy for surface wear.

Originality/value

The main value of this paper is to contribute and fulfil the detailed mechanical and metallurgical examinations of ion‐nitrided austenitic‐stainless steels that are being studied so far in the literature.

Details

Industrial Lubrication and Tribology, vol. 63 no. 5
Type: Research Article
ISSN: 0036-8792

Keywords

Article
Publication date: 1 February 2013

Hakan Aydin, Ali Bayram and Şükrü Topçu

The purpose of this paper is to present the results of a study on friction characteristics of plasma, salt‐bath and gas nitrided layers produced in AISI 304 type austenitic and…

Abstract

Purpose

The purpose of this paper is to present the results of a study on friction characteristics of plasma, salt‐bath and gas nitrided layers produced in AISI 304 type austenitic and AISI 420 type martensitic stainless steels.

Design/methodology/approach

Plasma nitriding processes were carried out with DC‐pulsed plasma in 80% N2+20% H2 atmosphere at 450°C and 520°C for 8 h at a pressure of 2 mbar. Salt‐bath nitriding was performed in a cyanide‐cyanate salt‐bath at 570°C for 1.5 h. Gas nitriding was also conducted in NH3 and CO2 atmosphere at 570°C for 13 h. Characterization of all nitrided samples has been carried out by means of microstructure, microhardness, surface roughness measurement and friction coefficient. The morphologies of the worn surfaces of the nitrided samples were also observed using a scanning electron microscope. Friction characteristics of the nitrided samples have been investigated using a ball‐on‐disc friction and wear tester with a WC‐Co ball as the counterface under dry sliding conditions.

Findings

The plasma nitrided and salt‐bath nitrided layers on the 420 steel surfaces were much thicker than on the 304 steel surfaces. However, there was no obvious and homogeneous nitrided layer on the gas nitrided samples' surface. The plasma and salt‐bath nitriding techniques significantly increased the surface hardness of the 304 and 420 samples. The highest surface hardness of the 304 nitrided samples was obtained by the plasma nitrided technique at 520°C. On the other hand, the highest surface hardness of the 420 nitrided layers was observed in the 450°C plasma nitrided layer. Experimental friction test results showed that the salt‐bath and 450°C plasma nitrided layers were more effective in reducing the friction coefficient of the 304 and 420 stainless steels, respectively.

Originality/value

The relatively poor hardness and hence wear resistance of austenitic and martensitic stainless steels needs to be improved. Friction characteristic is a key property of performance for various applications of austenitic and martensitic stainless steels. This work has reported a comparison of friction characteristics of austenitic 304 and martensitic 420 stainless steels, modified using plasma, salt‐bath and gas nitriding processes. The paper is of significances for improving friction characteristics, indirectly wear performances, of austenitic and martensitic stainless steels.

1 – 3 of 3