Search results

1 – 10 of over 3000

Abstract

Details

Traffic Safety and Human Behavior
Type: Book
ISBN: 978-1-78635-222-4

Open Access
Article
Publication date: 27 December 2021

Nengchao Lyu, Yugang Wang, Chaozhong Wu, Lingfeng Peng and Alieu Freddie Thomas

An individual’s driving style significantly affects overall traffic safety. However, driving style is difficult to identify due to temporal and spatial differences and scene…

1677

Abstract

Purpose

An individual’s driving style significantly affects overall traffic safety. However, driving style is difficult to identify due to temporal and spatial differences and scene heterogeneity of driving behavior data. As such, the study of real-time driving-style identification methods is of great significance for formulating personalized driving strategies, improving traffic safety and reducing fuel consumption. This study aims to establish a driving style recognition framework based on longitudinal driving operation conditions (DOCs) using a machine learning model and natural driving data collected by a vehicle equipped with an advanced driving assistance system (ADAS).

Design/methodology/approach

Specifically, a driving style recognition framework based on longitudinal DOCs was established. To train the model, a real-world driving experiment was conducted. First, the driving styles of 44 drivers were preliminarily identified through natural driving data and video data; drivers were categorized through a subjective evaluation as conservative, moderate or aggressive. Then, based on the ADAS driving data, a criterion for extracting longitudinal DOCs was developed. Third, taking the ADAS data from 47 Kms of the two test expressways as the research object, six DOCs were calibrated and the characteristic data sets of the different DOCs were extracted and constructed. Finally, four machine learning classification (MLC) models were used to classify and predict driving style based on the natural driving data.

Findings

The results showed that six longitudinal DOCs were calibrated according to the proposed calibration criterion. Cautious drivers undertook the largest proportion of the free cruise condition (FCC), while aggressive drivers primarily undertook the FCC, following steady condition and relative approximation condition. Compared with cautious and moderate drivers, aggressive drivers adopted a smaller time headway (THW) and distance headway (DHW). THW, time-to-collision (TTC) and DHW showed highly significant differences in driving style identification, while longitudinal acceleration (LA) showed no significant difference in driving style identification. Speed and TTC showed no significant difference between moderate and aggressive drivers. In consideration of the cross-validation results and model prediction results, the overall hierarchical prediction performance ranking of the four studied machine learning models under the current sample data set was extreme gradient boosting > multi-layer perceptron > logistic regression > support vector machine.

Originality/value

The contribution of this research is to propose a criterion and solution for using longitudinal driving behavior data to label longitudinal DOCs and rapidly identify driving styles based on those DOCs and MLC models. This study provides a reference for real-time online driving style identification in vehicles equipped with onboard data acquisition equipment, such as ADAS.

Details

Journal of Intelligent and Connected Vehicles, vol. 5 no. 1
Type: Research Article
ISSN: 2399-9802

Keywords

Abstract

Details

Traffic Safety and Human Behavior
Type: Book
ISBN: 978-1-78635-222-4

Open Access
Article
Publication date: 28 January 2020

Haotian Cao, Zhenghao Zhang, Xiaolin Song, Hong Wang, Mingjun Li, Song Zhao and Jianqiang Wang

The purpose of this paper is to investigate the influence of driver demographic characteristics on the driving safety involving cell phone usages.

1135

Abstract

Purpose

The purpose of this paper is to investigate the influence of driver demographic characteristics on the driving safety involving cell phone usages.

Design/methodology/approach

A total of 1,432 crashes and 19,714 baselines were collected for the Strategic Highway Research Program 2 naturalistic driving research. The authors used a case-control approach to estimate the prevalence and the population attributable risk percentage. The mixed logistic regression model is used to evaluate the correlation between different driver demographic characteristics (age, driving experience or their combination) and the crash risk regarding cell phone engagements, as well as the correlation among the likelihood of the cell phone engagement during the driving, multiple driver demographic characteristics (gender, age and driving experience) and environment conditions.

Findings

Senior drivers face an extremely high crash risk when distracted by cell phone during driving, but they are not involved in crashes at a large scale. On the contrary, cell phone usages account for a far larger percentage of total crashes for young drivers. Similarly, experienced drivers and experienced-middle-aged drivers seem less likely to be impacted by the cell phone while driving, and cell phone engagements are attributed to a lower percentage of total crashes for them. Furthermore, experienced, senior or male drivers are less likely to engage in cell phone-related secondary tasks while driving.

Originality/value

The results provide support to guide countermeasures and vehicle design.

Details

Journal of Intelligent and Connected Vehicles, vol. 3 no. 1
Type: Research Article
ISSN: 2399-9802

Keywords

Abstract

Details

Traffic Safety and Human Behavior
Type: Book
ISBN: 978-0-08-045029-2

Open Access
Article
Publication date: 14 December 2018

Xiaohan Li, Wenshuo Wang, Zhang Zhang and Matthias Rötting

Feature selection is crucial for machine learning to recognize lane-change (LC) maneuver as there exist a large number of feature candidates. Blindly using feature could take up…

1191

Abstract

Purpose

Feature selection is crucial for machine learning to recognize lane-change (LC) maneuver as there exist a large number of feature candidates. Blindly using feature could take up large storage and excessive computation time, while insufficient feature selection would cause poor performance. Selecting high contributive features to classify LC and lane-keep behavior is effective for maneuver recognition. This paper aims to propose a feature selection method from a statistical view based on an analysis from naturalistic driving data.

Design/methodology/approach

In total, 1,375 LC cases are analyzed. To comprehensively select features, the authors extract the feature candidates from both time and frequency domains with various LC scenarios segmented by an occupancy schedule grid. Then the effect size (Cohen’s d) and p-value of every feature are computed to assess their contribution for each scenario.

Findings

It has been found that the common lateral features, e.g. yaw rate, lateral acceleration and time-to-lane crossing, are not strong features for recognition of LC maneuver as empirical knowledge. Finally, cross-validation tests are conducted to evaluate model performance using metrics of receiver operating characteristic. Experimental results show that the selected features can achieve better recognition performance than using all the features without purification.

Originality/value

In this paper, the authors investigate the contributions of each feature from the perspective of statistics based on big naturalistic driving data. The aim is to comprehensively figure out different types of features in LC maneuvers and select the most contributive features over various LC scenarios.

Details

Journal of Intelligent and Connected Vehicles, vol. 1 no. 3
Type: Research Article
ISSN: 2399-9802

Keywords

Article
Publication date: 19 January 2024

Ping Huang, Haitao Ding, Hong Chen, Jianwei Zhang and Zhenjia Sun

The growing availability of naturalistic driving datasets (NDDs) presents a valuable opportunity to develop various models for autonomous driving. However, while current NDDs…

Abstract

Purpose

The growing availability of naturalistic driving datasets (NDDs) presents a valuable opportunity to develop various models for autonomous driving. However, while current NDDs include data on vehicles with and without intended driving behavior changes, they do not explicitly demonstrate a type of data on vehicles that intend to change their driving behavior but do not execute the behaviors because of safety, efficiency, or other factors. This missing data is essential for autonomous driving decisions. This study aims to extract the driving data with implicit intentions to support the development of decision-making models.

Design/methodology/approach

According to Bayesian inference, drivers who have the same intended changes likely share similar influencing factors and states. Building on this principle, this study proposes an approach to extract data on vehicles that intended to execute specific behaviors but failed to do so. This is achieved by computing driving similarities between the candidate vehicles and benchmark vehicles with incorporation of the standard similarity metrics, which takes into account information on the surrounding vehicles' location topology and individual vehicle motion states. By doing so, the method enables a more comprehensive analysis of driving behavior and intention.

Findings

The proposed method is verified on the Next Generation SIMulation dataset (NGSim), which confirms its ability to reveal similarities between vehicles executing similar behaviors during the decision-making process in nature. The approach is also validated using simulated data, achieving an accuracy of 96.3 per cent in recognizing vehicles with specific driving behavior intentions that are not executed.

Originality/value

This study provides an innovative approach to extract driving data with implicit intentions and offers strong support to develop data-driven decision-making models for autonomous driving. With the support of this approach, the development of autonomous vehicles can capture more real driving experience from human drivers moving towards a safer and more efficient future.

Details

Data Technologies and Applications, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 2514-9288

Keywords

Open Access
Article
Publication date: 8 August 2022

Ying Li, Li Zhao, Kun Gao, Yisheng An and Jelena Andric

The purpose of this paper is to characterize distracted driving by quantifying the response time and response intensity to an emergency stop using the driver’s physiological…

Abstract

Purpose

The purpose of this paper is to characterize distracted driving by quantifying the response time and response intensity to an emergency stop using the driver’s physiological states.

Design/methodology/approach

Field tests with 17 participants were conducted in the connected and automated vehicle test field. All participants were required to prioritize their primary driving tasks while a secondary nondriving task was asked to be executed. Demographic data, vehicle trajectory data and various physiological data were recorded through a biosignalsplux signal data acquisition toolkit, such as electrocardiograph for heart rate, electromyography for muscle strength, electrodermal activity for skin conductance and force-sensing resistor for braking pressure.

Findings

This study quantified the psychophysiological responses of the driver who returns to the primary driving task from the secondary nondriving task when an emergency occurs. The results provided a prototype analysis of the time required for making a decision in the context of advanced driver assistance systems or for rebuilding the situational awareness in future automated vehicles when a driver’s take-over maneuver is needed.

Originality/value

The hypothesis is that the secondary task will result in a higher mental workload and a prolonged reaction time. Therefore, the driver states in distracted driving are significantly different than in regular driving, the physiological signal improves measuring the brake response time and distraction levels and brake intensity can be expressed as functions of driver demographics. To the best of the authors’ knowledge, this is the first study using psychophysiological measures to quantify a driver’s response to an emergency stop during distracted driving.

Details

Journal of Intelligent and Connected Vehicles, vol. 5 no. 3
Type: Research Article
ISSN: 2399-9802

Keywords

Open Access
Article
Publication date: 12 July 2022

Zheng Xu, Yihai Fang, Nan Zheng and Hai L. Vu

With the aid of naturalistic simulations, this paper aims to investigate human behavior during manual and autonomous driving modes in complex scenarios.

1040

Abstract

Purpose

With the aid of naturalistic simulations, this paper aims to investigate human behavior during manual and autonomous driving modes in complex scenarios.

Design/methodology/approach

The simulation environment is established by integrating virtual reality interface with a micro-simulation model. In the simulation, the vehicle autonomy is developed by a framework that integrates artificial neural networks and genetic algorithms. Human-subject experiments are carried, and participants are asked to virtually sit in the developed autonomous vehicle (AV) that allows for both human driving and autopilot functions within a mixed traffic environment.

Findings

Not surprisingly, the inconsistency is identified between two driving modes, in which the AV’s driving maneuver causes the cognitive bias and makes participants feel unsafe. Even though only a shallow portion of the cases that the AV ended up with an accident during the testing stage, participants still frequently intervened during the AV operation. On a similar note, even though the statistical results reflect that the AV drives under perceived high-risk conditions, rarely an actual crash can happen. This suggests that the classic safety surrogate measurement, e.g. time-to-collision, may require adjustment for the mixed traffic flow.

Research limitations/implications

Understanding the behavior of AVs and the behavioral difference between AVs and human drivers are important, where the developed platform is only the first effort to identify the critical scenarios where the AVs might fail to react.

Practical implications

This paper attempts to fill the existing research gap in preparing close-to-reality tools for AV experience and further understanding human behavior during high-level autonomous driving.

Social implications

This work aims to systematically analyze the inconsistency in driving patterns between manual and autopilot modes in various driving scenarios (i.e. multiple scenes and various traffic conditions) to facilitate user acceptance of AV technology.

Originality/value

A close-to-reality tool for AV experience and AV-related behavioral study. A systematic analysis in relation to the inconsistency in driving patterns between manual and autonomous driving. A foundation for identifying the critical scenarios where the AVs might fail to react.

Details

Journal of Intelligent and Connected Vehicles, vol. 5 no. 3
Type: Research Article
ISSN: 2399-9802

Keywords

Abstract

Details

Traffic Safety and Human Behavior
Type: Book
ISBN: 978-1-78635-222-4

1 – 10 of over 3000