Search results

1 – 10 of over 6000
Article
Publication date: 2 January 2009

Ivica Kožar

The purpose of this paper is to investigate internal forces in bridges induced by moving vehicles and compare them to earthquake loading.

Abstract

Purpose

The purpose of this paper is to investigate internal forces in bridges induced by moving vehicles and compare them to earthquake loading.

Design/methodology/approach

Dynamic analysis of bridges is performed for moving support actions, for spectral method with Eurocode 8 parameters and for moving vehicle influence. Results from all three methods have been compared on two examples and conclusions have been made. Moving vehicle analysis could be based on the moving force and on the moving mass approach where the later one requires rather accurate knowledge of structural accelerations. It has been shown that the classical Newmark formulation produces accelerations of low accuracy and a novel impulse acceleration method has been devised.

Findings

It is found that the actions induced by the moving load could be comparable or larger than those caused by the earthquake on bridges whose mass is not too large in comparison to the vehicle mass.

Research limitations/implications

The developed method will be applied to a broader choice of examples and more reliable conclusions made.

Practical implications

There are bridges where it would be appropriate to perform moving vehicle dynamic analysis, in which case the vertical earthquake actions could be neglected in the analysis.

Originality/value

In order to assess actions from moving vehicles, Newmark method has been generalized in a novel way. Paper describes vector formulation of Newmark method that permits free mixing of integration parameters that could vary from node to node. The method is advantageous for moving load analysis where loading conditions of nodes change in time.

Details

Engineering Computations, vol. 26 no. 1/2
Type: Research Article
ISSN: 0264-4401

Keywords

Article
Publication date: 31 May 2011

J.D. Costa, J.A.M. Ferreira and L.P. Borrego

Welded components are often subjected to variable amplitude service loads, increasing the uncertainty of fatigue life due to material strength, notch geometries, defect content…

Abstract

Purpose

Welded components are often subjected to variable amplitude service loads, increasing the uncertainty of fatigue life due to material strength, notch geometries, defect content and residual stresses. In the case of friction stir welding (FSW) of aluminium alloys no data were found available concerning fatigue behaviour under variable amplitude loading. The purpose of this paper is to determine the fatigue strength of friction stir welds in AA6082‐T6 under constant and variable amplitude loading and analyse the validity of Miner's rule for these specific welding conditions.

Design/methodology/approach

Fatigue tests were carried out in a servo‐hydraulic testing machine using a stress ratio of R=0. Typified Gassner amplitude spectra were considered, using four shape exponent values. Microhardness tests were performed to characterize the Vickers hardness profile in the vicinity of the weld area. Relatively to the base material (BM), the FSW process leads to a decrease of the static mechanical properties.

Findings

Detailed examination revealed a hardness decrease in the thermo‐mechanically affected zone and the nugget zone average hardness was found to be lower than the base alloy hardness. The comparison with data collected from the literature shows that FSW specimens present higher fatigue resistance than specimens welded by metal inert gas and tungsten inert gas processes. However, they still have lower fatigue lives than the BM. Using the equivalent stress calculated by Miner's rule, a good agreement was observed between constant and variable fatigue loading results. The characteristic curve obtained for friction stir welds is higher than the International Institute of Welding (IIW) fatigue class for fusion welds with full‐penetration both‐sided butt joints.

Originality/value

No data are available concerning fatigue behaviour under variable amplitude loading for friction stir welds of aluminium alloys. Furthermore, this paper analyses the fatigue strength of friction stir welds in AA6082‐T6 under constant and variable amplitude loading in order to verify the validity of Miner's rule for this specific welding process. A comparison between characteristic fatigue curves, using IIW fatigue classes (FAT), is also performed.

Details

International Journal of Structural Integrity, vol. 2 no. 2
Type: Research Article
ISSN: 1757-9864

Keywords

Article
Publication date: 12 November 2010

David W. Wagner, Kaan Divringi, Can Ozcan, M. Grujicic, B. Pandurangan and A. Grujicic

The aim of this paper is to present and evaluate a methodology for automatically constructing and applying the physiologically‐realistic boundary/loading conditions for use in the…

3509

Abstract

Purpose

The aim of this paper is to present and evaluate a methodology for automatically constructing and applying the physiologically‐realistic boundary/loading conditions for use in the structural finite element analysis of the femur during various exertion tasks (e.g. gait/walking).

Design/methodology/approach

To obtain physiologically‐realistic boundary/loading conditions needed in the femur structural finite element analysis, a whole‐body musculoskeletal inverse dynamics analysis is carried out and the resulting muscle forces and joint reaction forces/moments extracted.

Findings

The finite element results obtained are compared with their counterparts available in literature and it is found that the overall agreement is acceptable while the highly automated procedure for the finite element model generation developed in the present work made the analysis fairly easy and computationally highly efficient. Potential sources of errors in the current procedure have been identified and the measures for their mitigation recommended.

Originality/value

The present approach enables a more accurate determination of the physiological loads experienced by the orthopedic implants which can be of great value to implant designers and orthopedic surgeons.

Details

Multidiscipline Modeling in Materials and Structures, vol. 6 no. 4
Type: Research Article
ISSN: 1573-6105

Keywords

Article
Publication date: 16 November 2012

Kazuhiro Oda, Xin Lan, Nao‐Aki Noda and Kengo Michinaka

The purpose of this paper is to compute the stress intensity factors (SIFs) of single edge interface crack for arbitrary material combinations and various relative crack lengths…

Abstract

Purpose

The purpose of this paper is to compute the stress intensity factors (SIFs) of single edge interface crack for arbitrary material combinations and various relative crack lengths, and compare with those for the bonded plates subjected to tensile loading conditions. It aims to discuss the results of the shallow edge interface crack on the basis of the singular stress near the free‐edge corner without the crack.

Design/methodology/approach

In this study, the SIFs of interface crack in dissimilar bonded plates subjected to bending loading conditions are analyzed by the finite element method and a post‐processing technique. The use of post‐processing technique of extrapolation reduces the computational cost and improves the accuracy of the obtained result.

Findings

The empirical expressions are proposed for evaluating the SIFs of arbitrary material combinations.

Originality/value

Empirical functions can be used to obtain the SIFs for arbitrary material combinations for the bending loading conditions easily. It is very convenient for engineering application.

Details

International Journal of Structural Integrity, vol. 3 no. 4
Type: Research Article
ISSN: 1757-9864

Keywords

Article
Publication date: 27 March 2009

Yusuke Ikemoto, Shingo Suzuki, Hiroyuki Okamoto, Hiroki Murakami, Hajime Asama, Soichiro Morishita, Taketoshi Mishima, Xin Lin and Hideo Itoh

The purpose of this paper is to describe the development of a contactless and batteryless loading sensor system that can measure the internal loading of an object structure…

Abstract

Purpose

The purpose of this paper is to describe the development of a contactless and batteryless loading sensor system that can measure the internal loading of an object structure through several covering materials for structural health monitoring.

Design/methodology/approach

The paper proposed an architecture by which two radio frequency identification (RFID) tags are used in the system. It has been difficult to realize sensing by RFID because of the low power supply. To solve the power supply problem, a method using functional distribution of RFID tags of two kinds of RFID for communication and power supply was proposed. One RFID tag is specialized as a power supply for communication of strain loading information through A/D conversion. Another is specialized to supply power for driving the strain gauges bridge circuit.

Findings

By using developed system, the measurement of the structural internal loading with 20.0 mm depth was possible through covering materials such as concrete, but also plaster board, flexible boards, silicate calcium board, blockboard, and polystyrene with a resolution performance from 10 × 10−6 to 40 × 10−6.

Originality/value

A sensor system was developed using passive RFID, which enables measurement of load‐deformation information inside a structural object. Moreover, the inexpensive wireless, batteryless devices used in this system require little maintenance, and applications for the user interface are also included in the developed system for uniform management of structural health monitoring. The developed system was evaluated in an actual situation using not only concrete but also other materials as covering materials on a structural object.

Details

Sensor Review, vol. 29 no. 2
Type: Research Article
ISSN: 0260-2288

Keywords

Article
Publication date: 3 May 2011

Yuan Kang, Jian‐Lin Lee, Hua‐Chih Huang, Ching‐Yuan Lin, Hsing‐Han Lee, De‐Xing Peng and Ching‐Chu Huang

The paper aims to determine whether the type selection and parameters determination of the compensation are most important for yielding the acceptable or optimized characteristics…

Abstract

Purpose

The paper aims to determine whether the type selection and parameters determination of the compensation are most important for yielding the acceptable or optimized characteristics in design of hydrostatic bearings.

Design/methodology/approach

This paper utilizes the equations of flow equilibrium to determine the film thickness or displacement of worktable with respect to the recess pressure.

Findings

The stiffness due to compensation of constant‐flow pump increases monotonically as recess pressure increases. Also, the paper considers which is larger than that due to orifice compensation and capillary compensation at the same recess pressure ratio.

Originality/value

The findings show that the usage range of recess pressure and compensation parameters can be selected to correspond to the smallest gradient in variations of worktable displacement or film thickness.

Details

Industrial Lubrication and Tribology, vol. 63 no. 3
Type: Research Article
ISSN: 0036-8792

Keywords

Article
Publication date: 24 August 2010

Izzet U. Cagdas

Purpose — The purpose of this paper is to assess the accuracy of homogenization or the smeared stiffness approach in analyzing quadrigrid plates under transverse loads is assessed…

Abstract

Purpose — The purpose of this paper is to assess the accuracy of homogenization or the smeared stiffness approach in analyzing quadrigrid plates under transverse loads is assessed by comparing two distinct finite element solutions. The grid is assumed to be made of homogeneous isotropic material. However, the numerical solution procedure adopted here is applicable to grids made of unidirectional composite ribs. Design/methodology/approach — The finite element structural analysis is conducted by using plate elements based on the first‐order shear deformable theory (FSDT) and grillage analysis using first‐order shear deformable beam elements. The grillage analysis results, which are taken as the exact results, are compared with the approximate results obtained using FSDT plate elements, where the stiffness matrices obtained by the smeared stiffness approach are incorporated in the plate finite element formulation. Several sample problems are solved and the influences of rib spacing, rib thickness‐to‐width ratio, plate dimensions, and loading are examined. Findings — The results presented here show that homogenization yields reliable results when certain conditions are satisfied. Originality/value — The paper demonstrates that it is necessity to conduct thorough and systematic research studies revealing the accuracy of these models, as the applicability limits of homogenization are not clearly known.

Details

Engineering Computations, vol. 27 no. 6
Type: Research Article
ISSN: 0264-4401

Keywords

Article
Publication date: 9 November 2010

A.E. Richardson, K. Coventry and S. Landless

Establishing toughness performance in concrete using steel fibres is well understood, and design guides are available to assist with this process. What is less readily understood…

Abstract

Purpose

Establishing toughness performance in concrete using steel fibres is well understood, and design guides are available to assist with this process. What is less readily understood is the use of Type 2 synthetic fibres to provide toughness. This problem is exacerbated by the wide range of synthetic fibres available, with each different fibre providing different structural properties. This paper seeks to address this issue.

Design/methodology/approach

The paper examines the relative pull‐out values of two single fibre types, i.e. steel and Type 2 synthetic fibres. The pull‐out test results have informed the doses of fibre additions to beams which have been used to equate near equal toughness performance for each fibre type.

Findings

The results show that synthetic Type 2 fibres, when used at a prescribed additional volume, can provide toughness equal to steel fibre concrete.

Originality/value

The scientific study of fibre pull‐out behaviour is well understood and described herein under additional reading. Practical testing to show contractors and clients how to balance the dose of fibres in concrete, so that synthetic fibres could be used as a steel fibre replacement, is not well researched. This paper bridges the information gap.

Details

Structural Survey, vol. 28 no. 5
Type: Research Article
ISSN: 0263-080X

Keywords

Article
Publication date: 24 September 2010

Nidhi Sharma, Rajneesh Kumar and Paras Ram

The paper's aim is to investigate a two‐dimensional deformation of homogeneous, anisotropic generalized thermoelastic diffusion as a result of an inclined load by applying Laplace…

Abstract

Purpose

The paper's aim is to investigate a two‐dimensional deformation of homogeneous, anisotropic generalized thermoelastic diffusion as a result of an inclined load by applying Laplace and Fourier transforms. The inclined load is assumed to be a linear combination of a normal load and a tangential load.

Design/methodology/approach

As an application, concentrated and distributed loads have been taken to illustrate the utility of the approach. The transformed solutions are inverted numerically, using a numerical inversion technique.

Findings

The variations of normal displacement, temperature distribution and chemical potential distribution due to different sources for different angle of inclinations with distance have been shown graphically to depict the effect of diffusion and anisotropy. A special case is also deduced from the present investigation.

Originality/value

It can contribute to the theoretical consideration of the seismic and volcanic sources since it can account for the deformation fields in the entire volume surrounding the sources region.

Details

Multidiscipline Modeling in Materials and Structures, vol. 6 no. 3
Type: Research Article
ISSN: 1573-6105

Keywords

Article
Publication date: 5 March 2010

M.M.I. Hammouda and I.G. El‐Batanony

The purpose of this paper is to estimate the number of cycles for fatigue crack initiation in notched plates.

1537

Abstract

Purpose

The purpose of this paper is to estimate the number of cycles for fatigue crack initiation in notched plates.

Design/methodology/approach

Previously published experimental results for tests with initially uncracked U‐shaped notches of different sizes and geometries are utilized. The present work defines the fatigue initiation period, Ni, as number of loading cycles required for the formation of a through‐thickness Mode I crack at the notch root macroscopically propagating along the plate width. Thus, backward extrapolation of the observed early decreasing fatigue growth rates of the initiated crack at the notch root on the specimen surface to zero surface crack size enables the estimation of Ni.

Findings

A parameter based on the normal strain range and the maximum normal stress acting at the notch root best fitted Ni.

Research limitations/implications

This paper provides an estimation of Ni in 3 mm thick mild steel plates subjected to constant amplitude uniaxial cyclic stresses. Initiated‐but‐non‐propagating cracks possibly found at the notch surface and at the notch root along the plate width are distinguished.

Originality/value

Based on the present analysis, a threshold stress is devised to represent the minimum stress level required for the appearance of a through‐thickness crack at the notch root running along the specimen width. Notched plates simulate many engineering applications particularly in aerospace industry.

Details

International Journal of Structural Integrity, vol. 1 no. 1
Type: Research Article
ISSN: 1757-9864

Keywords

1 – 10 of over 6000