Search results

1 – 10 of 77
Article
Publication date: 19 October 2023

Anuj Kumar and Mukul Shukla

Understanding and tailoring the solidification characteristics and microstructure evolution in as-built parts fabricated by laser powder bed fusion (LPBF) is crucial as they…

Abstract

Purpose

Understanding and tailoring the solidification characteristics and microstructure evolution in as-built parts fabricated by laser powder bed fusion (LPBF) is crucial as they influence the final properties. Experimental approaches to address this issue are time and capital-intensive. This study aims to develop an efficient numerical modeling approach to develop the process–structure (P-S) linkage for LPBF-processed Inconel 718.

Design/methodology/approach

In this study, a numerical approach based on the finite element method and cellular automata was used to model the multilayer, multitrack LPBF build for predicting the solidification characteristics (thermal gradient G and solidification rate R) and the average grain size. Validations from published experimental studies were also carried out to ensure the reliability of the proposed numerical approach. Furthermore, microstructure simulations were used to develop P-S linkage by evaluating the effects of key LPBF process parameters on G × R, G/R and average grain size. A solidification or G-R map was also developed to comprehend the P-S linkage.

Findings

It was concluded from the developed G-R map that low laser power and high scan speed will result in a finer microstructure due to an increase in G × R, but due to a decrease in G/R, columnar characteristics are also reduced. Moreover, increasing the layer thickness and decreasing the hatch spacing lowers the G × R, raises the G/R and generates a coarse columnar microstructure.

Originality/value

The proposed numerical modeling approach was used to parametrically investigate the effect of LPBF parameters on the resulting microstructure. A G-R map was also developed that enables the tailoring of the as-built LPBF microstructure through solidification characteristics by tuning the process parameters.

Details

Rapid Prototyping Journal, vol. 30 no. 2
Type: Research Article
ISSN: 1355-2546

Keywords

Article
Publication date: 6 March 2023

Bibo Yao, Zhenhua Li, Baoren Teng and Jing Liu

Laser powder bed fusion (LPBF) can be used to fabricate complex extrusion die without the limitation of structures. Layer-by-layer processing leads to differences in…

Abstract

Purpose

Laser powder bed fusion (LPBF) can be used to fabricate complex extrusion die without the limitation of structures. Layer-by-layer processing leads to differences in microstructures and wear properties. This study aims to investigate the microstructure evolution and effects of tungsten carbide (WC) on the wear properties of LPBF-printed 18Ni300.

Design/methodology/approach

Economical spherical granulation-sintering-deoxygenation (GSD) WC-reinforced 18Ni300 steel matrix composites were produced by LPBF from powder mixtures of WC and 18Ni300. The effects of WC contents on anisotropic microstructures and wear properties of the composites were investigated.

Findings

The relative density is more than 99% for all the composites except 25% WC/18Ni300 composite. The grain sizes distributed on the top cross-section are smaller than those on the side cross-section. After adding WC particles, more high-angle grain boundaries and larger Schmid factor generate, and deformed grains decrease. With increasing WC contents, the hardness first decreases and then increases but the wear volume loss decreases. The side cross-section of the composite has higher hardness and better wear resistance. The 18Ni300 exhibits adhesive wear accompanying with abrasive wear, while plowing and fatigue wear are the predominant wear mechanisms of the composites.

Originality/value

Economical spherical GSD WC particles can be used to improve the wear resistance. The novel WC/18Ni300 composites are suitable for the application under the abrasive wear condition with low stress.

Details

Rapid Prototyping Journal, vol. 29 no. 6
Type: Research Article
ISSN: 1355-2546

Keywords

Article
Publication date: 29 October 2021

Edwin Sallica-Leva, Fernando Henrique da Costa, Cláudio Teodoro Dos Santos, André Luiz Jardini, Jorge Vicente Lopes da Silva and João Batista Fogagnolo

This paper aims to describe the obtainment of Ti-6Al-4V parts with a hierarchical arrangement of pores by additive manufacturing, aiming at designing orthopedic implants.

Abstract

Purpose

This paper aims to describe the obtainment of Ti-6Al-4V parts with a hierarchical arrangement of pores by additive manufacturing, aiming at designing orthopedic implants.

Design/methodology/approach

The experimental methodology compares microstructural and mechanical properties of Menger pre-fractal sponges of Ti-6Al-4V alloy, manufactured by laser powder bed fusion (LPBF) and electron beam powder bed fusion (EBPBF), with three different porosity volumes. The pore arrangement followed the formation sequence of the Menger sponge, with hierarchical order from 1 to 3.

Findings

The LPBF parts presented a martensitic microstructure, while the EBPBF parts presented an α + ß microstructure, independently of its wall thickness. The LPBF parts presented higher mechanical resistance and effective stiffness than the EBPBF parts with similar porosity volume. The stiffness values of the Menger pre-fractal sponges of Ti-6Al-4V alloy, between 4 and 29 GPa, are comparable to those of the cortical bone. Furthermore, the deformation behavior presented by the Menger pre-fractal sponges of Ti-6Al-4V alloy did not follow the Gibson and Ashby model's prediction.

Originality/value

To the best of the authors' knowledge, this is the first study to obtain Menger pre-fractal sponges of Ti-6Al-4V alloy by LPBF and EBPBF. The deformation behavior of the obtained porous parts was contrasted with the Gibson and Ashby model's prediction.

Details

Rapid Prototyping Journal, vol. 28 no. 4
Type: Research Article
ISSN: 1355-2546

Keywords

Article
Publication date: 29 February 2024

Jie Wan, Biao Chen, Jianghua Shen, Katsuyoshi Kondoh, Shuiqing Liu and Jinshan Li

The metallic alloys and their components fabricated via laser powder bed fusion (LPBF) suffer from the microvoids formed inevitably due to the extreme solidification rate during…

Abstract

Purpose

The metallic alloys and their components fabricated via laser powder bed fusion (LPBF) suffer from the microvoids formed inevitably due to the extreme solidification rate during fabrication, which are impossible to be removed by heat treatment. This paper aims to remove those microvoids in as-built AlSi10Mg alloys by hot forging and enhance their mechanical properties.

Design/methodology/approach

AlSi10Mg samples were built using prealloyed powder with a set of optimized LPBF parameters, viz. 350 W of laser power, 1,170 mm/s of scan speed, 50 µm of layer thickness and 0.24 mm of hatch spacing. As-built samples were preheated to 430°C followed by immediate pressing with two different thickness reductions of 10% and 35%. The effect of hot forging on the microstructure was analyzed by means of X-ray diffraction, scanning electron microscopy, electron backscattered diffraction and transmission electron microscopy. Tensile tests were performed to reveal the effect of hot forging on the mechanical properties.

Findings

By using hot forging, the large number of microvoids in both as-built and post heat-treated samples were mostly healed. Moreover, the Si particles were finer in forged condition (∼150 nm) compared with those in heat-treated condition (∼300 nm). Tensile tests showed that compared with heat treatment, the hot forging process could noticeably increase tensile strength at no expense of ductility. Consequently, the toughness (integration of tensile stress and strain) of forged alloy increased by ∼86% and ∼24% compared with as-built and heat-treated alloys, respectively.

Originality/value

Hot forging can effectively remove the inevitable microvoids in metals fabricated via LPBF, which is beneficial to the mechanical properties. These findings are inspiring for the evolution of the LPBF technique to eliminate the microvoids and boost the mechanical properties of metals fabricated via LPBF.

Details

Rapid Prototyping Journal, vol. 30 no. 4
Type: Research Article
ISSN: 1355-2546

Keywords

Article
Publication date: 9 December 2022

Kaitlyn Gee, Suh In Kim, Haden Quinlan and A. John Hart

This study presents a framework to estimate throughput and cost of additive manufacturing (AM) as related to process parameters, material thermodynamic properties and machine…

Abstract

Purpose

This study presents a framework to estimate throughput and cost of additive manufacturing (AM) as related to process parameters, material thermodynamic properties and machine specifications. Taking a 3D model of the part design as input, the model uses a parametrization of the rate-limiting physics of the AM build process – herein focusing on laser powder bed fusion (LPBF) and scaling of LPBF melt pool geometry – to estimate part- and material-specific build time. From this estimate, per-part cost is calculated using a quantity-dependent activity-based production model.

Design/methodology/approach

Analysis tools that assess how design variables and process parameters influence production cost increase our understanding of the economics of AM, thereby supporting its practical adoption. To this aim, our framework produces a representative scaling among process parameters, build rate and production cost.

Findings

For exemplary alloys and LPBF system specifications, predictions reveal the underlying tradeoff between production cost and machine capability, and look beyond the capability of currently commercially available equipment. As a proxy for build quality, the number of times each point in the build is re-melted is derived analytically as a function of process parameters, showcasing the tradeoff between print quality due to increased melting cycles, and throughput.

Originality/value

Typical cost models for AM only assess single operating points and are not coupled to models of the representative rate-limiting process physics. The present analysis of LPBF elucidates this important coupling, revealing tradeoffs between equipment capability and production cost, and looking beyond the limits of current commercially available equipment.

Details

Rapid Prototyping Journal, vol. 29 no. 5
Type: Research Article
ISSN: 1355-2546

Keywords

Article
Publication date: 12 April 2022

Jianran Lv, Hongyao Shen and Jianzhong Fu

The purpose of this paper is to supplement and upgrade existing research on LPBF of NiTi alloys. Laser powder bed fusion (LPBF) is a promising method for fabricating…

Abstract

Purpose

The purpose of this paper is to supplement and upgrade existing research on LPBF of NiTi alloys. Laser powder bed fusion (LPBF) is a promising method for fabricating nickel–titanium (Ni–Ti) alloys. It is well known that the energy density is mainly adjusted through the scanning speed and laser power. Nevertheless, there is lack in research on the effects of separately adjusting the scanning speed and laser power on the properties of the final Ni–Ti components. On the other hand, although Ni-rich Ni–Ti alloys [such as Ni54(at.%)Ti] have great potential in structural applications because of their high hardness and good shape stability, at present, there are few studies focusing on this grade of Ni–Ti alloy.

Design/methodology/approach

In this work, the energy density was adjusted by changing the laser power and scanning speed separately, and the corresponding process parameters were used to fabricate Ni54(at.%)Ti alloys. The formability (including the relative density, impurity content, etc.) and tensile properties of the LPBF Ni54(at.%)Ti alloys fabricated with different combinations of process parameters were analyzed.

Findings

The effects of increasing the laser power and reducing the scanning speed on the properties of the LPBF Ni54(at.%)Ti alloys and the property differences between components manufactured with different combinations of laser power and scanning speed under the same energy density were analyzed. The optimal process parameters were selected to fabricate the components that achieved the highest ultimate tensile strength of 537 MPa, a high relative density of 98.23%, a relatively low impurity content (0.073 Wt.% of carbon and 0.06 Wt.% of oxygen) and an ideal pseudoelasticity (95% recovery rate loaded at 300 MPa).

Originality/value

The effects of increasing the laser power and reducing the scanning speed on the properties of LPBF Ni54(at.%)Ti alloys were studied in this paper. This work is an upgrade and supplement to the existing research on fabricating Ni-rich Ni–Ti alloys by the LPBF method.

Details

Rapid Prototyping Journal, vol. 28 no. 6
Type: Research Article
ISSN: 1355-2546

Keywords

Article
Publication date: 15 September 2021

You-Cheng Chang, Hong-Chuong Tran and Yu-Lung Lo

Laser powder bed fusion (LPBF) provides the means to produce unique components with almost no restriction on geometry in an extremely short time. However, the high-temperature…

Abstract

Purpose

Laser powder bed fusion (LPBF) provides the means to produce unique components with almost no restriction on geometry in an extremely short time. However, the high-temperature gradient and high cooling rate produced during the fabrication process result in residual stress, which may prompt part warpage, cracks or even baseplate separation. Accordingly, an appropriate selection of the LPBF processing parameters is essential to ensure the quality of the built part. This study, thus, aims to develop an integrated simulation framework consisting of a single-track heat transfer model and a modified inherent shrinkage method model for predicting the curvature of an Inconel 718 cantilever beam produced using the LPBF process.

Design/methodology/approach

The simulation results for the curvature of the cantilever beam are calibrated via a comparison with the experimental observations. It is shown that the calibration factor required to drive the simulation results toward the experimental measurements has the same value for all settings of the laser power and scanning speed. Representative combinations of the laser power and scanning speed are, thus, chosen using the circle packing design method and supplied as inputs to the validated simulation framework to predict the corresponding cantilever beam curvature and density. The simulation results are then used to train artificial neural network models to predict the curvature and solid cooling rate of the cantilever beam for any combination of the laser power and scanning speed within the input design space. The resulting processing maps are screened in accordance with three quality criteria, namely, the part density, the radius of curvature and the solid cooling rate, to determine the optimal processing parameters for the LPBF process.

Findings

It is shown that the parameters lying within the optimal region of the processing map reduce the curvature of the cantilever beam by 17.9% and improve the density by as much as 99.97%.

Originality/value

The present study proposes a computational framework, which could find the parameters that not only yield the lowest distortion but also produce fully dense components in the LPBF process.

Article
Publication date: 1 August 2022

Di Wang, Xiongmian Wei, Jian Liu, Yunmian Xiao, Yongqiang Yang, Linqing Liu, Chaolin Tan, Xusheng Yang and Changjun Han

This paper aims to explore a structural optimization method to achieve the lightweight design of an aviation control stick part manufactured by laser powder bed fusion (LPBF

Abstract

Purpose

This paper aims to explore a structural optimization method to achieve the lightweight design of an aviation control stick part manufactured by laser powder bed fusion (LPBF) additive manufacturing (AM). The utilization of LPBF for the fabrication of the part provides great freedom to its structure optimization, further reduces its weight and improves its portability.

Design/methodology/approach

The stress distribution of the model was analyzed by finite element analysis. The material distribution path of the model was optimized through topology optimization. The structure and size of the parts were designed by applying honeycomb structures for weight reduction. The lightweight designed control stick part model was printed by LPBF using AlSi10Mg.

Findings

The weight of the control stick model was reduced by 32.64% through the optimization method using honeycomb structures with various geometries. The similar stress concentrations of the control stick model indicate that weight reduction has negligible effect on its mechanical strength. The maximum stress of the lightweight designed model under loading is 230.85 MPa, which is 61.81% larger than that of the original model. The lightweight control stick part manufactured by LPBF has good printability and service performance.

Originality/value

A structural optimization method integrating topology, shape and size optimization was proposed for a lightweight AlSi10Mg control stick printed by LPBF. The effectiveness of the optimization method, the printability of the lightweight model and the service performance of LPBF-printed AlSi10Mg control stick was verified, which provided practical references for the lightweight design of AM.

Details

Rapid Prototyping Journal, vol. 28 no. 10
Type: Research Article
ISSN: 1355-2546

Keywords

Article
Publication date: 8 November 2023

Yang Zhou, Zhong Li, Yuhe Huang, Xiaohan Chen, Xinggang Li, Xiaogang Hu and Qiang Zhu

Laser powder bed fusion (LPBF) in-situ alloying is a recently developed technology that provides a facile approach to optimizing the microstructural and compositional…

Abstract

Purpose

Laser powder bed fusion (LPBF) in-situ alloying is a recently developed technology that provides a facile approach to optimizing the microstructural and compositional characteristics of the components for high performance goals. However, the complex mass and heat transfer behavior of the molten pool results in an inhomogeneous composition distribution within the samples fabricated by LPBF in-situ alloying. The study aims to investigate the heat and mass transfer behavior of an in-situ alloyed molten pool by developing a three-dimensional transient thermal-flow model that couples the metallurgical behavior of the alloy, thereby revealing the formation mechanism of composition inhomogeneity.

Design/methodology/approach

A multispecies multiphase computational fluid dynamic model was developed with thermodynamic factors derived from the phase diagram of the selected alloy system. The characteristics of the Al/Cu powder bed in-situ alloying process were investigated as a benchmark. The metallurgical behaviors including powder melting, thermal-flow, element transfer and solidification were investigated.

Findings

The Peclet number indicates that the mass transfer in the molten pool is dominated by convection. The large variation in material properties and temperature results in the presence of partially melted Cu-powder and pre-solidified particles in the molten pool, which further hinder the convection mixing. The study of simulation and experiment indicates that optimizing the laser energy input is beneficial for element homogenization. The effective time and driving force of the convection stirring can be improved by increasing the volume energy density.

Originality/value

This study provides an in-depth understanding of the formation mechanism of composition inhomogeneity in alloy fabricated by LPBF in-situ alloying.

Details

Rapid Prototyping Journal, vol. 30 no. 1
Type: Research Article
ISSN: 1355-2546

Keywords

Open Access
Article
Publication date: 6 September 2022

Agnieszka Chmielewska, Bartlomiej Adam Wysocki, Elżbieta Gadalińska, Eric MacDonald, Bogusława Adamczyk-Cieślak, David Dean and Wojciech Świeszkowski

The purpose of this paper is to investigate the effect of remelting each layer on the homogeneity of nickel-titanium (NiTi) parts fabricated from elemental nickel and titanium…

1349

Abstract

Purpose

The purpose of this paper is to investigate the effect of remelting each layer on the homogeneity of nickel-titanium (NiTi) parts fabricated from elemental nickel and titanium powders using laser powder bed fusion (LPBF). In addition, the influence of manufacturing parameters and different melting strategies, including multiple cycles of remelting, on printability and macro defects, such as pore and crack formation, have been investigated.

Design/methodology/approach

An LPBF process was used to manufacture NiTi alloy from elementally blended powders and was evaluated with the use of a remelting scanning strategy to improve the homogeneity of fabricated specimens. Furthermore, both single melt and up to two remeltings were used.

Findings

The results indicate that remelting can be beneficial for density improvement as well as chemical and phase composition homogenization. Backscattered electron mode in scanning electron microscope showed a reduction in the presence of unmixed Ni and Ti elemental powders in response to increasing the number of remelts. The microhardness values of NiTi parts for the different numbers of melts studied were similar and ranged from 487 to 495 HV. Nevertheless, it was observed that measurement error decreases as the number of remelts increases, suggesting an increase in chemical and phase composition homogeneity. However, X-ray diffraction analysis revealed the presence of multiple phases regardless of the number of melt runs.

Originality/value

For the first time, to the best of the authors’ knowledge, elementally blended NiTi powders were fabricated via LPBF using remelting scanning strategies.

1 – 10 of 77