Search results

1 – 10 of over 1000
Article
Publication date: 19 July 2019

Song Cen, Cheng Jin Wu, Zhi Li, Yan Shang and Chenfeng Li

The purpose of this paper is to give a review on the newest developments of high-performance finite element methods (FEMs), and exhibit the recent contributions achieved by the…

388

Abstract

Purpose

The purpose of this paper is to give a review on the newest developments of high-performance finite element methods (FEMs), and exhibit the recent contributions achieved by the authors’ group, especially showing some breakthroughs against inherent difficulties existing in the traditional FEM for a long time.

Design/methodology/approach

Three kinds of new FEMs are emphasized and introduced, including the hybrid stress-function element method, the hybrid displacement-function element method for Mindlin–Reissner plate and the improved unsymmetric FEM. The distinguished feature of these three methods is that they all apply the fundamental analytical solutions of elasticity expressed in different coordinates as their trial functions.

Findings

The new FEMs show advantages from both analytical and numerical approaches. All the models exhibit outstanding capacity for resisting various severe mesh distortions, and even perform well when other models cannot work. Some difficulties in the history of FEM are also broken through, such as the limitations defined by MacNeal’s theorem and the edge-effect problems of Mindlin–Reissner plate.

Originality/value

These contributions possess high value for solving the difficulties in engineering computations, and promote the progress of FEM.

Article
Publication date: 18 April 2017

Yi Bao, Song Cen and Chenfeng Li

A simple shape-free high-order hybrid displacement function element method is presented for precise bending analyses of Mindlin–Reissner plates. Three distortion-resistant and…

Abstract

Purpose

A simple shape-free high-order hybrid displacement function element method is presented for precise bending analyses of Mindlin–Reissner plates. Three distortion-resistant and locking-free eight-node plate elements are proposed by utilizing this method.

Design/methodology/approach

This method is based on the principle of minimum complementary energy, in which the trial functions for resultant fields are derived from two displacement functions, F and f, and satisfy all governing equations. Meanwhile, the element boundary displacements are determined by the locking-free arbitrary order Timoshenko’s beam functions. Then, three locking-free eight-node, 24-DOF quadrilateral plate-bending elements are formulated: HDF-P8-23β for general cases, HDF-P8-SS1 for edge effects along soft simply supported (SS1) boundary and HDF-P8-FREE for edge effects along free boundary.

Findings

The proposed elements can pass all patch tests, exhibit excellent convergence and possess superior precision when compared to all other existing eight-node models, and can still provide good and stable results even when extremely coarse and distorted meshes are used. They can also effectively solve the edge effect by accurately capturing the peak value and the dramatical variations of resultants near the SS1 and free boundaries. The proposed eight-node models possess potential in engineering applications and can be easily integrated into commercial software.

Originality/value

This work presents a new scheme, which can take the advantages of both analytical and discrete methods, to develop high-order mesh distortion-resistant Mindlin–Reissner plate-bending elements.

Details

Engineering Computations, vol. 34 no. 2
Type: Research Article
ISSN: 0264-4401

Keywords

Article
Publication date: 5 March 2018

Yan Shang, Song Cen and Wengen Ouyan

The purpose of this paper is to propose a new finite element method (FEM) solving strategy for efficient analysis of the challenging edge effect problem in plate structures. Its…

Abstract

Purpose

The purpose of this paper is to propose a new finite element method (FEM) solving strategy for efficient analysis of the challenging edge effect problem in plate structures. Its main ideas are to develop special-purpose plate element models to effectively simulate the behaviors in the plate’s edge zones near free/SS1 edges.

Design/methodology/approach

These new elements are developed based on the hybrid-Trefftz element method. During their construction procedures, the analytical solutions of the edge effect problem, which are in exponential forms, are used to enhance the interior displacement fields. Besides, the Lagrangian multipliers are introduced into the modified hybrid-Trefftz functional for considering the stress resultant constraints at free/SS1 edges. Thus, these elements theoretically possess the abilities to correctly capture the very steep gradients of the resultant distributions in the boundary layers.

Findings

These new specialized hybrid-Trefftz plate elements can very efficiently solve the edge effect problem with high accuracy, even when distorted meshes are used. Moreover, because these elements’ construction procedures contain only boundary integrals, the computation expense for accurately integrating the exponential trial functions can be considerably saved.

Originality/value

This work presents an alternative novel idea for using the FEM to more effectively handle the local stress problems by incorporating the use of the analytical trial functions.

Details

Engineering Computations, vol. 35 no. 1
Type: Research Article
ISSN: 0264-4401

Keywords

Article
Publication date: 21 February 2020

Changsheng Wang, Xiao Han, Caixia Yang, Xiangkui Zhang and Wenbin Hou

Numerous finite elements are proposed based on analytical solutions. However, it is difficult to find the solutions for complicated governing equations. This paper aims to present…

Abstract

Purpose

Numerous finite elements are proposed based on analytical solutions. However, it is difficult to find the solutions for complicated governing equations. This paper aims to present a novel formulation in the framework of assumed stress quasi-conforming method for the static and free vibration analysis of anisotropic and symmetric laminated plates.

Design/methodology/approach

Firstly, an initial stress approximation ruled by 17 parameters, which satisfies the equilibrium equations is derived to improve the performance of the constructed element. Then the stress matrix is treated as the weighted function to weaken the strain-displacement equations. Finally, the Timoshenko’s laminated composite beam functions are adopted as boundary string-net functions for strain integration.

Findings

Several numerical examples are presented to show the performance of the new element, and the results obtained are compared with other available ones. Numerical results have proved that the new element is free from shear locking and possesses high accuracy for the analysis of anisotropic and symmetric laminated plates.

Originality/value

This paper proposes a new QC element for the static and free vibration analysis of anisotropic and symmetric laminated plates. In contrast with the complicated analytical solutions of the equilibrium equations, an initial stress approximation ruled by 17 parameters is adopted here. The Timoshenkos laminated composite beam functions are introduced as boundary string-net functions for strain integration. Numerical results demonstrate the new element is free from shear locking and possesses high accuracy for the analysis of anisotropic and symmetric laminated plates.

Details

Engineering Computations, vol. 37 no. 6
Type: Research Article
ISSN: 0264-4401

Keywords

Article
Publication date: 30 October 2018

Changsheng Wang, Xiaoxiao Sun, Xiangkui Zhang and Ping Hu

A higher-order Reissner-Mindlin plate element method is presented based on the framework of assumed stress quasi-conforming method and Hellinger-Reissner variational principle. A…

Abstract

Purpose

A higher-order Reissner-Mindlin plate element method is presented based on the framework of assumed stress quasi-conforming method and Hellinger-Reissner variational principle. A novel six-node triangular plate element is proposed by utilizing this method for the static and free vibration analysis of Reissner-Mindlin plates.

Design/methodology/approach

First, the initial assumed stress field is derived by using the fundamental analytical solutions which satisfy all governing equations. Then the stress matrix is treated as the weighted function to weaken the strain-displacement equations after the strains are derived by using the constitutive equations. Finally, the arbitrary order Timoshenko beam function is adopted as the string-net functions along each side of the element for strain integration.

Findings

The proposed element can pass patch test and is free from shear locking and spurious zero energy modes. Numerical tests show that the element can give high-accurate solutions, good convergence and is a good competitor to other models.

Originality/value

This work gives new formulations to develop high-order Reissner-Mindlin plate element, and the new strategy exhibits advantages of both analytical and discrete methods.

Article
Publication date: 10 May 2019

Wenan Wu and Hong Zheng

This study aims to introduce the hybrid finite element (FE) – meshfree method and multiscale variational principle into the traditional mixed FE formulation, leading to a stable…

Abstract

Purpose

This study aims to introduce the hybrid finite element (FE) – meshfree method and multiscale variational principle into the traditional mixed FE formulation, leading to a stable mixed formulation for incompressible linear elasticity which circumvents the need to satisfy inf-sup condition.

Design/methodology/approach

Using the hybrid FE–meshfree method, the displacement and pressure are interpolated conveniently with the same order so that a continuous pressure field can be obtained with low-order elements. The multiscale variational principle is then introduced into the Galerkin form to obtain stable and convergent results.

Findings

The present method is capable of overcoming volume locking and does not exhibit unphysical oscillations near the incompressible limit. Moreover, there are no extra unknowns introduced in the present method because the fine-scale unknowns are eliminated using the static condensation technique, and there is no need to evaluate any user-defined stability parameter as the classical stabilization methods do. The shape functions constructed in the present model possess continuous derivatives at nodes, which gives a continuous and more precise stress field with no need of an additional smooth process. The shape functions in the present model also possess the Kronecker delta property, so that it is convenient to impose essential boundary conditions.

Originality/value

The proposed model can be implemented easily. Its convergence rates and accuracy in displacement, energy and pressure are even comparable to those of second-order mixed elements.

Article
Publication date: 1 June 1997

Jaroslav Mackerle

Gives a bibliographical review of the finite element methods (FEMs) applied for the linear and nonlinear, static and dynamic analyses of basic structural elements from the…

6051

Abstract

Gives a bibliographical review of the finite element methods (FEMs) applied for the linear and nonlinear, static and dynamic analyses of basic structural elements from the theoretical as well as practical points of view. The range of applications of FEMs in this area is wide and cannot be presented in a single paper; therefore aims to give the reader an encyclopaedic view on the subject. The bibliography at the end of the paper contains 2,025 references to papers, conference proceedings and theses/dissertations dealing with the analysis of beams, columns, rods, bars, cables, discs, blades, shafts, membranes, plates and shells that were published in 1992‐1995.

Details

Engineering Computations, vol. 14 no. 4
Type: Research Article
ISSN: 0264-4401

Keywords

Article
Publication date: 1 April 1989

Peter M. Pinsky and Raja V. Jasti

A new laminated composite plate finite element is proposed that is numerically stable and accurate in displacements and stresses, including transverse shear stress. The…

36

Abstract

A new laminated composite plate finite element is proposed that is numerically stable and accurate in displacements and stresses, including transverse shear stress. The formulation is based on the Hellinger—Reissner principle with Mindlin kinematics. All stress components are given independent approximations and do not satisfy equilibrium conditions a priori. A novel feature of the formulation is the additive decomposition of the displacement field into two parts corresponding to nodal interpolations and independent local basis functions. The additional basis functions and their associated parameters play an important role in characterizing the accuracy of the element. These functions eliminate shear locking in the lower order elements and provide additional variational constraints on the stresses, leading to very accurate results. A 4‐node and a 9‐node version are developed and it is shown that both elements pass the patch test suggested by Zienkiewicz et al. and are stable in the sense of the Babuška—Brezzi condition. The special structure of the element flexibility matrix provides computational efficiency approaching that of displacement based formulations.

Details

Engineering Computations, vol. 6 no. 4
Type: Research Article
ISSN: 0264-4401

Article
Publication date: 1 June 2010

Xiang‐Rong Fu, Song Cen, C.F. Li and Xiao‐Ming Chen

Purpose − The purpose of this paper is to propose a novel and simple strategy for construction of hybrid‐“stress function” plane element. Design/methodology/approach − First, a…

Abstract

Purpose − The purpose of this paper is to propose a novel and simple strategy for construction of hybrid‐“stress function” plane element. Design/methodology/approach − First, a complementary energy functional, in which the Airy stress function is taken as the functional variable, is established within an element for analysis of plane problems. Second, 15 basic analytical solutions (in global Cartesian coordinates) of the stress function are taken as the trial functions for an 8‐node element, and meanwhile, 15 unknown constants are then introduced. Third, according to the principle of minimum complementary energy, the unknown constants can be expressed in terms of the displacements along element edges, which are interpolated by element nodal displacements. Finally, the whole system can be rewritten in terms of element nodal displacement vector. Findings − A new hybrid element stiffness matrix is obtained. The resulting 8‐node plane element, denoted as analytical trial function (ATF‐Q8), possesses excellent performance in numerical examples. Furthermore, some numerical defects, such as direction dependence and interpolation failure, are not found in present model. Originality/value − This paper presents a new strategy for developing finite element models exhibits advantages of both analytical and discrete method.

Details

Engineering Computations, vol. 27 no. 4
Type: Research Article
ISSN: 0264-4401

Keywords

Article
Publication date: 1 January 1986

Hou Cheng Huang and Jing Yu Zhang

We describe how to improve the accuracy of stress in the application of the hybrid finite element method. The idea is based on the fact that the assumed stress hybrid method is…

Abstract

We describe how to improve the accuracy of stress in the application of the hybrid finite element method. The idea is based on the fact that the assumed stress hybrid method is equivalent to both the principle of minimum complementary energy within the interior of each element and the principle of the minimum potential energy in the entire domain. It is known that when a good hybrid model is used for the displacement solution, the stress model must satisfy equilibrium within individual elements and be comparable with the boundary displacements. However, the compatibility in the elements is usually ignored and through variational operation it may be only approximately satisfied. So the stress model cannot approach a corresponding analytical stress field. In the present study, after nodal displacements are solved, we propose that a different stress model could be used to find the stress coefficients according to the principle of minimum complementary energy in each element in order to get an improved stress field.

Details

Engineering Computations, vol. 3 no. 1
Type: Research Article
ISSN: 0264-4401

1 – 10 of over 1000