Search results

1 – 7 of 7
Article
Publication date: 8 April 2014

Shun-Te Hsiao, Yuan Kang, Shyh-Ming Jong, Hsing-Han Lee, De-Xing Peng and Yeon-Pun Chang

This paper aims to study the static characteristics of the hydrostatic conical journal bearings by utilizing single-action membrane restrictors to compensate the working pressures…

Abstract

Purpose

This paper aims to study the static characteristics of the hydrostatic conical journal bearings by utilizing single-action membrane restrictors to compensate the working pressures of recesses.

Design/methodology/approach

The flow resistance network method is used to analyze the influences of load capacity and static stiffness of bearing with the design parameters, including the number of recesses, radial eccentricity ratio, axial displacement ratio, restriction constant, membrane compliance, length-diameter ratio, circumferential land width ratio, axial land width ratio and half of cone angle.

Findings

This study shows the infinite stiffness of the oil produced in the first and second recesses while single-action membrane restriction constant of 2 and 3, respectively, as well as in the fourth recess while single-action membrane restriction constant of 0.01 and 0.1, respectively.

Research limitations/implications

This article provides the hydrostatic conical bearings in static and unbiased states for analyses of design parameters. The analyses ignore dynamic pressure effect and do not use the Reynolds equation, and assuming that each oil recesses pressure is constant.

Practical implications

The influences of the design parameters including the number of recesses, membrane restriction, membrane compliance, length-diameter ratio, half of con-angle, circumferential land width ratio, and axial land width ratio are discussed to the load capacity and static stiffness of conical bearing.

Originality/value

Based on the characteristics of the conical bearing through analysis, this article suggests the front bearing with hard membrane restrictor (capillary) and the back bearing with soft membrane restrictor are the most appropriate for axial stiffness.

Details

Industrial Lubrication and Tribology, vol. 66 no. 3
Type: Research Article
ISSN: 0036-8792

Keywords

Article
Publication date: 8 May 2007

Yuan Kang, Ping‐Chen Shen, Cheng‐Hsign Chen, Yeon‐Pun Chang and Hsing‐Han Lee

This paper seeks to modify the determinations of flow rate and fluid resistance, which can be realized and confident from the measurements of flow rates in experiments.

Abstract

Purpose

This paper seeks to modify the determinations of flow rate and fluid resistance, which can be realized and confident from the measurements of flow rates in experiments.

Design/methodology/approach

According to coupled physics of solid membrane and lubrication fluid, finite element method is used simultaneously to determine membrane deflection and film thickness. Several cases are simulated by traditional method, finite element method and compared with experimental method for the flow rates and fluid resistances to present the modification of determination results.

Findings

The FEM results for the fixed eight‐section are approximated to actual flow rate and are consistent with the modified determination of the flow rates, and so the modified determinations of the flow rates are verified. When a computer of P4 with 1.8 GHz CPU and 512 MB RAM is utilized, time needed for traditional method or modified formula is fewer than one second. However, more than 4 h is required for FEM by using the same computer.

Originality/value

This study provides the modified method for the determinations of flow rate and fluid resistance in membrane‐type restrictors by using FEM. The FEM results can increase the determination accuracy of the flow rate and restriction coefficient in the design of membrane‐type restrictors.

Details

Industrial Lubrication and Tribology, vol. 59 no. 3
Type: Research Article
ISSN: 0036-8792

Keywords

Article
Publication date: 13 February 2007

Cheng‐Hsien Chen, Yeon‐Pun Chang, Hsing‐Han Lee, Yea‐Ping Wang and Yuan Kang

The present paper proposes a theoretical analysis of the stability characteristics of a rigid rotor‐hybrid bearing system. It is intended that on the basis of the numerical…

Abstract

Purpose

The present paper proposes a theoretical analysis of the stability characteristics of a rigid rotor‐hybrid bearing system. It is intended that on the basis of the numerical results drawn from this study, the optimal restriction parameter for stable operation can be determined for use in the bearing design process.

Design/methodology/approach

A rigid rotor supported by hybrid oil film bearings with six recesses and capillary‐compensated restrictors is studied. In order to facilitate the calculation of film dynamics, using the perturbation method, the Reynolds equation was linearized and subsequently solved using finite difference techniques, whilst the stability maps were determined by the Routh‐Hurwitz method.

Findings

The data reported here suggest that the stability characteristics of the rigid rotor‐bearing system could be improved by the use of shallow, dual‐recessed hybrid bearings with capillary compensation. For the same restriction parameter and the same land‐width ratio used in large eccentricity case the stability characteristics of a shallow‐recessed bearing is superior to that of a deep‐recessed bearing, however, a deep‐recessed bearing with a small land‐width ratio and a small restriction parameter can provide better stability than a shallow‐recessed bearing with a large land‐width ratio or with a large restriction parameter.

Originality/value

This study proposes an extensive database as a critical requirement in the design of hybrid bearings, in order to ensure that a rotor bearing system is operating stably.

Details

Industrial Lubrication and Tribology, vol. 59 no. 1
Type: Research Article
ISSN: 0036-8792

Keywords

Article
Publication date: 1 February 2005

Cheng‐Hsien Chen, Yuan Kang, Yeon‐Pun Chang, Hsing‐Han Lee and Ping‐Chen Shen

The present paper proposes a theoretical analysis of the stability characteristics of a Jeffcott rotor‐hybrid bearing system. It is intended that on the basis of the numerical…

Abstract

Purpose

The present paper proposes a theoretical analysis of the stability characteristics of a Jeffcott rotor‐hybrid bearing system. It is intended that on the basis of the numerical results drawn from this study, appropriate recess depth, land size, orifice location and speed parameter for stable operation can be determined for use in the bearing design process.

Design/methodology/approach

A Jeffcott rotor supported by hybrid oil film bearings with dual‐row recesses and orifice‐ compensated restrictors is studied. In order to facilitate the calculation of film dynamics, using the perturbation method, the Reynolds equation was linearized and subsequently solved using finite difference techniques, whilst the stability maps were determined by the Routh‐Hurwitz method.

Findings

The data reported here suggest that the stability characteristics of the Jeffcott rotor‐bearing system could be improved by the use of shallow, dual‐recessed hybrid bearings with orifice compensation. In addition to greater eccentricity ratios, smaller land‐width ratios and greater shaft stiffness may also provide shallow‐recessed bearings with better stability. In all cases, the stability provided by upstream orifice‐sited bearings is better than that provided by center orifice‐sited bearings, whilst high‐speed parameters may also provide a greater stability threshold.

Originality/value

This study proposes an extensive database as a critical requirement in the design of hybrid bearings, in order to ensure that a rotor bearing system is operating stably.

Details

Industrial Lubrication and Tribology, vol. 57 no. 1
Type: Research Article
ISSN: 0036-8792

Keywords

Article
Publication date: 3 May 2011

Yuan Kang, Jian‐Lin Lee, Hua‐Chih Huang, Ching‐Yuan Lin, Hsing‐Han Lee, De‐Xing Peng and Ching‐Chu Huang

The paper aims to determine whether the type selection and parameters determination of the compensation are most important for yielding the acceptable or optimized characteristics…

Abstract

Purpose

The paper aims to determine whether the type selection and parameters determination of the compensation are most important for yielding the acceptable or optimized characteristics in design of hydrostatic bearings.

Design/methodology/approach

This paper utilizes the equations of flow equilibrium to determine the film thickness or displacement of worktable with respect to the recess pressure.

Findings

The stiffness due to compensation of constant‐flow pump increases monotonically as recess pressure increases. Also, the paper considers which is larger than that due to orifice compensation and capillary compensation at the same recess pressure ratio.

Originality/value

The findings show that the usage range of recess pressure and compensation parameters can be selected to correspond to the smallest gradient in variations of worktable displacement or film thickness.

Details

Industrial Lubrication and Tribology, vol. 63 no. 3
Type: Research Article
ISSN: 0036-8792

Keywords

Article
Publication date: 8 March 2011

Yuan Kang, Cheng‐Hsien Chen, Hsing‐Han Lee, Yu‐Hong Hung and Shun‐Te Hsiao

This study aims to utilize the equations of flow equilibrium to determine the variations of film thickness or worktable displacement with respect to the recess pressure for both…

Abstract

Purpose

This study aims to utilize the equations of flow equilibrium to determine the variations of film thickness or worktable displacement with respect to the recess pressure for both open‐ and closed‐type hydrostatic flat bearings. The static stiffness can be not only presented directly by these variations but also determined by the differentiation of flow equilibrium equations.

Design/methodology/approach

The single‐action variable compensations of three types including cylindrical‐spool, conical‐spool and membrane restrictors are taken into consideration in this study. Specifically, this study presents that membrane restrictor and both spool restrictors with or without preload whilst considering initial opening.

Findings

Consequently, the usage range of recess pressure and optimal parameters of appropriate compensation type can be obtained from maximum stiffness and also according to smallest gradient in variations of worktable displacement or film thickness.

Originality/value

This article studies the influences of single‐action variable compensations for its design varieties. The determination of stiffness comes from the differentiating recess pressure with respect to worktable displacement. The large and small positive stiffness correspond to a negative slope in steep and plain gradient, respectively; the negative stiffness and infinite stiffness are obtained by positive gradient and zero gradient, respectively, in the variations of film thickness. The finding results can be expressed further in the relationship between the static stiffness and the static load.

Details

Industrial Lubrication and Tribology, vol. 63 no. 2
Type: Research Article
ISSN: 0036-8792

Keywords

Article
Publication date: 16 September 2013

Yuan Kang, De-Xing Peng, Hsing-Han Lee, Sheng-Yan Hu and Yeon-Pun Chang

Constant flow valves have been presented in industrial applications or academic studies, which compensate pressures of bearing recesses as load fluctuates. The flow rate of…

Abstract

Purpose

Constant flow valves have been presented in industrial applications or academic studies, which compensate pressures of bearing recesses as load fluctuates. The flow rate of constant-flow valves (CFVs) can be constant in spite of the pressure changes in recesses. However, specific condition of design parameters must be satisfied. The paper aims to discuss these issues.

Design/methodology/approach

This paper utilizes analytical method to study the static characteristics of CFVs, three types belong to traditional design of CFV are reviewed afresh. Moreover, an innovative design for constant flow is presented and studied.

Findings

The review and study results reveal that appropriate relationships among design parameters for these types of CFVs.

Originality/value

The numerical simulation is used to investigate the influence of design parameters on the change of flow rate when pressure ratio of recess is changed.

Details

Industrial Lubrication and Tribology, vol. 65 no. 6
Type: Research Article
ISSN: 0036-8792

Keywords

1 – 7 of 7