Search results

1 – 10 of 913
Article
Publication date: 19 August 2021

Oliver Bahr

This paper aims to answer two questions. First, are there any differences in the fire performance of columns made of normal and of high-strength concrete? Second, under which…

Abstract

Purpose

This paper aims to answer two questions. First, are there any differences in the fire performance of columns made of normal and of high-strength concrete? Second, under which circumstances does the fire design govern the cross-sectional dimensions of concrete columns? Is it feasible to replace columns out of normal strength concrete by more slender high-strength concrete columns?

Design/methodology/approach

The author conducted numerical studies using the finite element code “Infocad” of the German company “Infograph”. The studies included the effect of different parameters on the fire performance of columns out of normal and high-strength concrete, i.e. the load ratio and eccentricity, boundary conditions and times of fire exposure.

Findings

Results from the numerical investigations showed that high-strength concrete columns suffer much more from heating than normal strength concrete columns. This is the outcome of the unfavourable mechanical properties of high-strength concrete at elevated temperatures. Although the relative fire performance of columns out of high-strength concrete is worse than that of columns out of normal strength concrete, initial load reserves are beneficial to achieve even high fire ratings.

Originality/value

Many researchers addressed in experimental and numerical studies the fire performance of columns out of normal and high-strength concrete. A special emphasis was often laid on the spalling of fire-exposed high-strength concrete. However, there are no systematic investigations when the fire design governs the cross-sectional dimensions of high-strength concrete columns. Based on a previous comparison of the relative fire performance of columns out of normal and high-strength concrete, this paper, hence, addresses the question whether there is a reasonable lower limit for the use of these columns. This is an important aspect for designers since there is a tendency to replace columns out of normal strength concrete by columns out of high-strength concrete. Higher concrete strengths allow for smaller cross sections of the columns, and designers may, hence, increase the usable space of buildings.

Details

Journal of Structural Fire Engineering, vol. 12 no. 4
Type: Research Article
ISSN: 2040-2317

Keywords

Article
Publication date: 28 February 2019

Muhd Afiq Hizami Abdullah, Mohd Zulham Affandi Mohd Zahid, Afizah Ayob and Khairunnisa Muhamad

The purpose of this study is to investigate the effect on flexural strength of fire-damaged concrete repaired with high-strength mortar (HSM).

Abstract

Purpose

The purpose of this study is to investigate the effect on flexural strength of fire-damaged concrete repaired with high-strength mortar (HSM).

Design/methodology/approach

Reinforced concrete beams with dimension of 100 mm × 100 mm × 500 mm were used in this study. Beams were then heated to 400°C and overlaid with either HSM or high-strength fiber reinforced mortar (HSFM) to measure the effectiveness of repair material. Repaired beams of different material were then tested for flexural strength. Another group of beams was also repaired and tested by the same procedure but was heated at higher temperature of 600°C.

Findings

Repair of 400°C fire-damaged samples using HSM regained 72 per cent of its original flexural strength, 100.8 per cent of its original toughness and 56.9 per cent of its original elastic stiffness. Repair of 400°C fire-damaged samples using HSFM regained 113.5 per cent of its original flexural strength, 113 per cent of its original toughness and 85.1 per cent of its original elastic stiffness. Repair of 600°C fire-damaged samples using HSM regained 18.7 per cent of its original flexural strength, 25.9 per cent of its original peak load capacity, 26.1 per cent of its original toughness and 22 per cent of its original elastic stiffness. Repair of 600°C fire-damaged samples using HSFM regained 68.4 per cent of its original flexural strength, 96.5 per cent of its original peak load capacity, 71.2 per cent of its original toughness and 52.2 per cent of its original elastic stiffness.

Research limitations/implications

This research is limited to the size of the furnace. The beam specimen is limited to 500 mm of length and overall dimensions. This dimension is not practical in actual structure, hence it may cause exaggeration of deteriorating effect of heating on reinforced concrete beam.

Practical implications

This study may promote more investigation of using HSM as repair material for fire-damaged concrete. This will lead to real-world application and practical solution for fire-damaged structure.

Social implications

The aim of this research in using HSM mostly due to the material’s high workability which will ease its application and promote quality in repair of damaged structure.

Originality/value

There is a dearth of research on using HSM as repair material for fire-damaged concrete. Some research has been carried out using mortar but at lower strength compared to this research.

Details

Journal of Structural Fire Engineering, vol. 10 no. 1
Type: Research Article
ISSN: 2040-2317

Keywords

Article
Publication date: 3 October 2016

Sabah Ben Messaoud and Bouzidi Mezghiche

The aim of this paper is to make lightweight high-performance concrete (LWHPC) with high economic performance from existing materials on the Algerian market. Concrete with high…

Abstract

Purpose

The aim of this paper is to make lightweight high-performance concrete (LWHPC) with high economic performance from existing materials on the Algerian market. Concrete with high values with regard to following properties: mechanical, physical, rheological and durability. Because of the implementation of some basic scientific principles on the technology of LWHPC, this study is part of the valuation of local materials to manufacture LWHPC with several enhanced features such as mechanical, physical chemical, rheological and durability in the first place and with regard to the economic aspect in the second place.

Design/methodology/approach

The experimental study focused on the compatibility of cement/superplasticizer, the effect of water/cement ratio (W/C 0.22, 0.25, 0.30), the effect of replacing a part of cement by silica fume (8 per cent), the effect of combined replacement of a part of cement by silica fume (8 per cent) and natural pozzolan (10 per cent, 15 per cent, 25 per cent) and the effect of fraction of aggregate on properties of fresh and hardened concrete using the mix design method of the University of Sherbrooke, which is easy to realize and gives good results.

Findings

The results obtained allow to conclude that it is possible to manufacture LWHPC with good mechanical and physical properties in the authors’ town with available materials on the Algerian market. The mix design and manufacture of concrete with a compressive strength at 28 days reaching 56 MPa or more than 72 MPa is now possible in Biskra (Algeria), and it must no longer be used only in the experimental field. The addition of silica fume in concrete showed good strength development between the ages of 7 and 28 days depending on the mix design; concrete containing 8 per cent silica fume with a W/B (water/binder) of 0.25 has a compressive strength higher than other concretes, and concrete with silica fume is stronger than concrete without silica fume, so we can have concrete with a compressive strength of 62 MPa for W/C of 0.25 without silica fume. Then, one can avoid the use of silica fume to a resistance of concrete to the compressive strength of 62 MPa and a slump of 21 cm, as silica fume is the most expensive ingredient in the composition of the concrete and is very important economically. A main factor in producing high-strength concrete above 72 MPa is to use less reactive natural pozzolan (such as silica fume) in combination with silica fume and a W/B low of 0.25 and 0.30. The combination of silica fume and natural pozzolan in mixtures resulted in a very dense microstructure and low porosity and produced an enhanced permeability of concrete of high strength, as with resistance to the penetration of aggressive agents; thus, an economical concrete was obtained using this combination.

Research limitations/implications

The study of the influence of cementitious materials on concrete strength gain was carried out. Other features of LWHPC such as creep, cracking, shrinkage, resistance to sulphate attack, corrosion resistance, fire resistance and durability should be also studied, because there are cases where another feature is most important for the designer or owner than the compressive strength at 28 days. Further studies should include a range of variables to change mixtures significantly and determine defined applications of LWHPC to produce more efficient and economical concretes. It is important to gather information on LWHPC to push forward the formulation of characteristics for pozzolan concrete for the building industry.

Practical implications

The LWHPC can be used to obtain high modules of elasticity and high durability in special structures such as marine structures, superstructures, parking, areas for aircraft/airplane runways, bridges, tunnels and industrial buildings (nuclear power stations).

Originality/value

The novel finding of the paper is the use of crystallized slag aggregates and natural pozzolan aggregates to obtain LWHPC.

Details

World Journal of Engineering, vol. 13 no. 5
Type: Research Article
ISSN: 1708-5284

Keywords

Article
Publication date: 1 October 2003

H.Y. Leung and R.V. Balendran

Use of fibre‐reinforced polymer (FRP) composite rods, in lieu of steel rebars, as the main flexural reinforcements in reinforced concrete (RC) beams have recently been suggested…

2663

Abstract

Use of fibre‐reinforced polymer (FRP) composite rods, in lieu of steel rebars, as the main flexural reinforcements in reinforced concrete (RC) beams have recently been suggested by many researchers. However, the development of FRP RC beam design is still stagnant in the construction industry and this may be attributed to a number of reasons such as the high cost of FRP rods compared to steel rebars and the reduced member ductility due to the brittleness of FRP rods. To resolve these problems, one of the possible methods is to adopt both FRP rods and steel rebars to internally reinforce the concrete members. The effectiveness of this new reinforcing system remains problematic and continued research in this area is needed. An experimental study on the load‐deflection behaviour of concrete beams internally reinforced with glass fibre‐reinforced polymer (GFRP) rods and steel rebars was therefore conducted and some important findings are summarized in this paper.

Details

Structural Survey, vol. 21 no. 4
Type: Research Article
ISSN: 0263-080X

Keywords

Article
Publication date: 14 March 2016

Ya Wei, Francis T.K. Au, Jing Li and Neil C.M. Tsang

This paper aims to understand the structural fire performance of two-way post-tensioned flat slabs, particularly their deformations and load-carrying mechanisms in fire, and to…

Abstract

Purpose

This paper aims to understand the structural fire performance of two-way post-tensioned flat slabs, particularly their deformations and load-carrying mechanisms in fire, and to explore the behaviour of post-tensioned high-strength self-compacting concrete flat slabs with unbonded tendons in fire.

Design/methodology/approach

Four tests of post-tensioned high-strength self-compacting concrete flat slabs were conducted under fire conditions. Numerical modelling using the commercial package ABAQUS was conducted to help interpret the test results.

Findings

Two of the specimens with lower moisture contents demonstrated excellent fire resistance performance, while the others with slightly higher moisture contents experienced severe concrete spalling.

Originality/value

The test results were discussed in respect of thermal profiles, deflections, crack patterns and concrete spalling. The performance of post-tensioned high-strength self-compacting concrete flat slabs with unbonded tendons under fire conditions was better understood.

Details

Journal of Structural Fire Engineering, vol. 7 no. 1
Type: Research Article
ISSN: 2040-2317

Keywords

Article
Publication date: 3 September 2019

Mariyana Aida Ab Kadir, Mohammad Iqbal Khiyon, Abdul Rahman Mohd. Sam, Ahmad Beng Hong Kueh, Nor Hasanah Abdul Shukor Lim, Muhammad Najmi Mohamad Ali Mastor, Nurizaty Zuhan and Roslli Noor Mohamed

The purpose of this paper is to examine the mechanical properties, material composition of spent garnet as a sand replacement in high-strength concrete at room and elevated…

Abstract

Purpose

The purpose of this paper is to examine the mechanical properties, material composition of spent garnet as a sand replacement in high-strength concrete at room and elevated temperatures. Bonding of the concrete containing spent garnet and reinforcing rebar is investigated. Moreover, the optimum thickness of concrete cover subjected to elevated temperatures is investigated.

Design/methodology/approach

First, the plain spent garnet was physically, chemically and thermally studied. Then, a series of concrete specimens with 0, 20, 40, 60, 80 and 100 per cent of spent garnet were prepared to determine the optimum percentage of spent garnet. Finally, the physical and mechanical behaviours of concrete specimens and effects of cover thickness on steel rebar when subjected to elevated temperature of 200°C, 400°C, 600°C and 800°C for 1 h were studied. It was observed that spent garnet was thermally stable compared to river sand.

Findings

Mechanical properties were found to be optimal for concrete with 40% spent garnet replacement. Physically, spent garnet concrete changed colour to brown at 400°C, and to whitish grey at 600°C. The residual compressive strength of spent garnet concrete was also found slightly higher than that for control specimens. At various high temperatures, the reduction in ultimate tensile stress for steel bar inside concrete cover of 30 mm was the lowest compared to that of 20 mm.

Research limitations/implications

Spalling effect it not considered in this study.

Practical implications

The optimum concrete cover is important issues in reinforced concrete design. This can be used as a guideline by structural designers when using a different type of concrete material in the construction.

Social implications

Utilization of the waste spent garnet reduces usage of natural aggregates in concrete production and enhances its performance at elevated temperatures. Natural aggregates are normally taken from sand and rock. The new innovation in concrete perhaps can produce light concrete, reduce the cost of concrete production and at the same time also mitigates environmental problems affect from waste material such as minimizing disposal area.

Originality/value

Utilization of spent garnet in ordinary Portland cement (OPC) concrete at high temperature is a new innovation. It shows that the concrete cover of the concrete element reduced as compared to the OPC concrete. Reduce in weight concrete however the strength of concrete is similar to conventional concrete. This study at elevated temperature has never been performed by any previous researcher.

Details

Journal of Structural Fire Engineering, vol. 10 no. 4
Type: Research Article
ISSN: 2040-2317

Keywords

Article
Publication date: 1 March 2006

Alan E. Richardson

Conflicting claims have been made in relation to the effects of polypropylene fibres on the compressive strength of concrete. The purpose of this paper is to examine the effects…

2434

Abstract

Purpose

Conflicting claims have been made in relation to the effects of polypropylene fibres on the compressive strength of concrete. The purpose of this paper is to examine the effects on compressive strength of various dosages of monofilament polypropylene fibres when used in concrete. Compressive strength is widely used as the key indicator of concrete quality and therefore needs accurate determination. Monofilament fibres and air entrainment provide a similar function in that they provide freeze/thaw protection, they are both compared against a plain concrete sample to determine relative strength and density.

Design/methodology/approach

Two different concrete design strengths (medium and high) were examined with varying amounts and types of polypropylene fibre fraction/volume to establish a common link between fibre additions and reduced final compressive strength.

Findings

The findings from the test programme showed a linear reduction in strength which was observed as being directly related to fibre inclusion in concrete. Density was also found to be reduced with the addition of fibres in a similar degree to that of air entrainment.

Research limitations/implications

The lower density of concrete with polypropylene fibre additions was not scientifically explained and this aspect currently forms part of a long term freeze/thaw research programme, which will examine pore spacing and void formation compared to plain concrete.

Originality/value

This paper is of interest to clients, concrete manufacturers, concrete additive manufacturers, designers, surveyors and specifiers who need to know what effect polypropylene fibre additives have upon the final compressive strength.

Details

Structural Survey, vol. 24 no. 2
Type: Research Article
ISSN: 0263-080X

Keywords

Article
Publication date: 27 November 2023

Maha Assad, Rami Hawileh, Ghada Karaki, Jamal Abdalla and M.Z. Naser

This research paper aims to investigate reinforced concrete (RC) walls' behaviour under fire and identify the thermal and mechanical factors that affect their performance.

Abstract

Purpose

This research paper aims to investigate reinforced concrete (RC) walls' behaviour under fire and identify the thermal and mechanical factors that affect their performance.

Design/methodology/approach

A three-dimensional (3D) finite element (FE) model is developed to predict the response of RC walls under fire and is validated through experimental tests on RC wall specimens subjected to fire conditions. The numerical model incorporates temperature-dependent properties of the constituent materials. Moreover, the validated model was used in a parametric study to inspect the effect of the fire scenario, reinforcement concrete cover, reinforcement ratio and configuration, and wall thickness on the thermal and structural behaviour of the walls subjected to fire.

Findings

The developed 3D FE model successfully predicted the response of experimentally tested RC walls under fire conditions. Results showed that the fire resistance of the walls was highly compromised under hydrocarbon fire. In addition, the minimum wall thickness specified by EC2 may not be sufficient to achieve the desired fire resistance under considered fire scenarios.

Originality/value

There is limited research on the performance of RC walls exposed to fire scenarios. The study contributed to the current state-of-the-art research on the behaviour of RC walls of different concrete types exposed to fire loading, and it also identified the factors affecting the fire resistance of RC walls. This guides the consideration and optimisation of design parameters to improve RC walls performance in the event of a fire.

Details

Journal of Structural Fire Engineering, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 2040-2317

Keywords

Article
Publication date: 4 June 2021

Niragi Dave, Ramesh Guduru, Anil Kumar Misra and Anil Kumar Sharma

The consumption of supplementary cementitious materials (SCMs) has increased enormously in the construction industry. These SCMs are often waste materials or industrial…

Abstract

Purpose

The consumption of supplementary cementitious materials (SCMs) has increased enormously in the construction industry. These SCMs are often waste materials or industrial by-products. This study aims to investigate the bond strength using reinforcing bars in Normal Strength Concrete (M20 grade) and High Strength Concrete (M40 grade), developed using SCMs and data was compared with concrete prepared with ordinary portland cement (OPC). The findings of the study will help in reducing the dependency on OPC and promote the utilization of waste materials in Construction.

Design/methodology/approach

In the present study, the bond behavior between the steel bars and the concrete was investigated in controlled, binary and quaternary concretes of M20 and M40 grades. Following the conventional procedures, samples were prepared and mechanical tests conducted (as per IS:2770–1 code for M20 and M40 grade concrete structures), which showed an improvement in the bond strength depending on the extent of overall calcium and silica content in these composite mixtures, and thus reflected the importance of vigilant utilization of used industrial waste in the OPC as a replacement without exceeding silica content beyond certain percentages for enhanced structural properties.

Findings

Experimental evaluation of bond behavior results showed a brittle nature for the controlled (OPC) concrete mixtures. While binary and quaternary concrete was able to resist the load-carrying capacity under large deformations and prevented the split cracking and disintegration of the concretes. Among different variations in the chemistry, for both M20 and M40 grades, the maximum bond strengths were observed for 10% Metakaolin + 10% Silica Fume + 30% Fly Ash + 50% OPC composition and this could be attributed to the fineness of the additives, better packing and enhanced calcium silicate hydrate (C-S-H).

Originality/value

Quaternary concrete may be a future option in place of OPC concrete. Very limited data is available related to the bond strength of quaternary concrete. Experimental analysis on quaternary concrete shows that its use in construction can reduce both construction cost and a burden on natural raw materials used to make OPC.

Details

Journal of Engineering, Design and Technology , vol. 20 no. 6
Type: Research Article
ISSN: 1726-0531

Keywords

Article
Publication date: 22 April 2024

Ghada Karaki, Rami A. Hawileh and M.Z. Naser

This study examines the effect of temperature-dependent material models for normal-strength (NSC) and high-strength concrete (HSC) on the thermal analysis of reinforced concrete

Abstract

Purpose

This study examines the effect of temperature-dependent material models for normal-strength (NSC) and high-strength concrete (HSC) on the thermal analysis of reinforced concrete (RC) walls.

Design/methodology/approach

The study performs an one-at-a-time (OAT) sensitivity analysis to assess the impact of variables defining the constitutive and parametric fire models on the wall's thermal response. Moreover, it extends the sensitivity analysis to a variance-based analysis to assess the effect of constitutive model type, fire model type and constitutive model uncertainty on the RC wall's thermal response variance. The study determines the wall’s thermal behaviour reliability considering the different constitutive models and their uncertainty.

Findings

It is found that the impact of the variability in concrete’s conductivity is determined by its temperature-dependent model, which differs for NSC and HSC. Therefore, more testing and improving material modelling are needed. Furthermore, the heating rate of the fire scenario is the dominant factor in deciding fire-resistance performance because it is a causal factor for spalling in HSC walls. And finally the reliability of wall's performance decreased sharply for HSC walls due to the expected spalling of the concrete and loss of cross-section integrity.

Originality/value

Limited studies in the current open literature quantified the impact of constitutive models on the behaviour of RC walls. No studies have examined the effect of material models' uncertainty on wall’s response reliability under fire. Furthermore, the study's results contribute to the ongoing attempts to shape performance-based structural fire engineering.

Details

Journal of Structural Fire Engineering, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 2040-2317

Keywords

1 – 10 of 913