Search results

1 – 10 of over 12000
Article
Publication date: 17 September 2021

Wang Zhizhong, Han Chao, Guosheng Huang, Han Bin and Han Bin

The deposition of particles onto a substrate during the cold spraying (CS) process relies on severe plastic deformation, so there are various micro-defects induced by insufficient…

Abstract

Purpose

The deposition of particles onto a substrate during the cold spraying (CS) process relies on severe plastic deformation, so there are various micro-defects induced by insufficient deformation and severe crushing. To solve the problems, many post-treat techniques have been used to improving the quality by eliminating the micro-defects. This paper aims to help scholars and engineers in this field a better and systematic understand of CS technology by summarizing the post-treatment technologies that have been investigated recently years.

Design/methodology/approach

This review summarizes the types of micro-defects and introduces the effect of micro-defects on the properties of CS coating/additive manufactured, illustrates the post-treatment technologies and its effect on the microstructure and performances, and finally outlooks the future development trends of post-treatments for CS.

Findings

There are significant discoveries in post-treatment technology to change the performance of cold spray deposits. There are also many limitations for post-treatment methods, including improved performance and limitations of use. Thus, there is still a strong requirement for further improvement. Hybrid post-treatment may be a more ideal method, as it can eliminate more defects than a single method. The proposed ultrasonic impact treatment could be an alternative method, as it can densify and flatten the CS deposits.

Originality/value

It is the first time to reveal the influence factors on the performances of CS deposits from the perspective of microdefects, and proposed corresponding well targeted post-treatment methods, which is more instructive for improving the performances of CS deposits.

Details

Rapid Prototyping Journal, vol. 28 no. 2
Type: Research Article
ISSN: 1355-2546

Keywords

Article
Publication date: 26 July 2022

Haifeng Xiao, Changchun Zhang and Haihong Zhu

This paper aims to systematically investigate the effect of the heat treatment process parameters on the microstructure and mechanical properties of the selective laser melting…

Abstract

Purpose

This paper aims to systematically investigate the effect of the heat treatment process parameters on the microstructure and mechanical properties of the selective laser melting (SLM) AlSi10Mg alloy.

Design/methodology/approach

The samples with very low porosity were fabricated with optimized processing parameters on a self-developed SLM system. The heat treatment of using the temperature of 170°C∼400°C and the holding time of 0.5∼12 h was studied, and the evolution of the microstructure and mechanical properties of AlSi10Mg alloy under direct aging and annealing was investigated and obtained.

Findings

After annealing above 300°C for 1 h, the dendrite Si in the sample occurs spheroidization, and the molten pool contour becomes blurred or even disappeared completely, but low-temperature heat treatment does not change the morphology and size of grains significantly. Except for holding at 200°C for 1 h, all other heat treatment processes cause the tensile and yield strengths of SLM AlSi10Mg alloys to decrease and the elongation to increase. When the annealing temperature is higher than 200°C, the higher the temperature and the longer the holding time, the more obvious this effect is.

Originality/value

The correlation between the mechanical properties and microstructure of SLM AlSi10Mg alloy under different conditions was obtained. According to the characteristics of SLM forming, the direct aging and annealing process are mainly studied, which provided new information for the heat treatment of SLM AlSi10Mg alloy and promoted the engineering application of SLM AlSi10Mg alloy.

Details

Rapid Prototyping Journal, vol. 29 no. 1
Type: Research Article
ISSN: 1355-2546

Keywords

Article
Publication date: 1 September 1999

Jürgen Fuhrmann, Dietmar Hömberg and Manfred Uhle

We discuss a model that is capable of describing the process of induction hardening of steel: induction heatingheat transfer – solid‐solid phase transitions in steel. It…

Abstract

We discuss a model that is capable of describing the process of induction hardening of steel: induction heatingheat transfer – solid‐solid phase transitions in steel. It consists of a reduced system of Maxwell’s equations, the heat transfer eqaution and a system of ordinary differential equations for the volume fractions of the occuring phases. The model is applied to simulate surface heat treatments, which play an important role in the manufacturing of steel. The numerical methods are implemented with tools from pdelib, a collection of modular algorithms. We present numerical simulations of surface hardening applied to the steel 42 CrMo 4.

Details

COMPEL - The international journal for computation and mathematics in electrical and electronic engineering, vol. 18 no. 3
Type: Research Article
ISSN: 0332-1649

Keywords

Article
Publication date: 2 January 2018

Mohsen Shabanlo, Reza Amini Najafabadi and Amirhossein Meysami

This study aims to investigate the effect of post heat treatment on mechanical properties of NiCrBSi coatings, which were applied on 316L stainless steel using high-velocity…

Abstract

Purpose

This study aims to investigate the effect of post heat treatment on mechanical properties of NiCrBSi coatings, which were applied on 316L stainless steel using high-velocity oxygen-fuel (HVOF) and flame spray techniques.

Design/methodology/approach

The properties of coatings were investigated by metallographic characterizations as well as wear, micro-hardness and adhesion tests.

Findings

The micro-hardness results showed that the coatings considerably increased the sub-layer hardness. In addition, regarding the wear test results, it can be seen that heat treatment increased wear resistance of the coatings. These thermal sprayed coatings are usually re-melted by post heat treatment, leading to improvement in tribological properties. The results obtained revealed that re-melting procedure improved the metallurgical bonding in the substrate\coating interface.

Originality/value

Microstructure defects resulting from thermal spraying such as pores and unmelted particles can be eliminated by post heat treatment. This process can considerably improve the corrosion and wear resistances of the thermal sprayed coatings.

Details

Anti-Corrosion Methods and Materials, vol. 65 no. 1
Type: Research Article
ISSN: 0003-5599

Keywords

Article
Publication date: 1 May 1971

Earliest localism was sited on a tree or hill or ford, crossroads or whenceways, where people assembled to talk, (Sax. witan), or trade, (Sax. staple), in eggs, fowl, fish or…

Abstract

Earliest localism was sited on a tree or hill or ford, crossroads or whenceways, where people assembled to talk, (Sax. witan), or trade, (Sax. staple), in eggs, fowl, fish or faggots. From such primitive beginnings many a great city has grown. Settlements and society brought changes; appointed headmen and officials, a cloak of legality, uplifted hands holding “men to witness”. Institutions tend to decay and many of these early forms passed away, but not the principle vital to the system. The parish an ecclesiastical institution, had no place until Saxons, originally heathens, became Christians and time came when Church, cottage and inn filled the lives of men, a state of localism in affairs which endured for centuries. The feudal system decayed and the vestry became the seat of local government. The novels of Thomas Hardy—and English literature boasts of no finer descriptions of life as it once was—depict this authority and the awe in which his smocked countrymen stood of “the vicar in his vestry”. The plague freed serfs and bondsmen, but events, such as the Poor Law of 1601, if anything, revived the parish as the organ of local government, but gradually secular and ecclesiastical aspects were divided and the great population explosion of the eighteenth century created necessity for subdivision of areas, which continued to serve the principle of localism however. The ballot box completed the eclipse of Church; it changed concepts of localism but not its importance in government.

Details

British Food Journal, vol. 73 no. 5
Type: Research Article
ISSN: 0007-070X

Article
Publication date: 22 September 2022

Srinivasan Raghavan, Jan Dzugan, Sylwia Rzepa, Pavel Podany, Norman Soh, Lim Jia Hao and Niaz Khan

This study aims to investigate the effect of the wall thickness, deposition orientation and two different post-processing methods on the local mechanical properties and…

Abstract

Purpose

This study aims to investigate the effect of the wall thickness, deposition orientation and two different post-processing methods on the local mechanical properties and microstructure of additively manufactured parts made of maraging steel. In order to examine the local properties of the build, miniaturized testing specimens were employed. Before application of small-sized specimens, their performance was verified.

Design/methodology/approach

The investigation was composed of two stages. As first, the part thickness, specimen size and orientation were studied on a laser-powder bed fusion (L-PBF) platform with deposited walls of various thicknesses made of maraging steel. Subsequently, the influence of different heat-treatment methods was investigated on the final product, i.e. impellers. The miniaturized and standard tensile tests were performed to investigate the local mechanical properties. The porosity, microstructures and fracture surfaces were analysed by X-ray-computed tomography, X-ray diffraction and scanning electron microscopy with electron backscatter diffraction.

Findings

The results revealed good agreement between the values provided by miniaturized and standard specimens. The thinnest parts produced had the largest pores and the highest scatter of elongation values. In these cases, also the sub-contour porosity was observed. Part thickness affected pores’ size and results repeatability but not total porosity. The two-step heat-treatment (solutionizing and age-hardening) exhibited the highest yield and ultimate tensile strength.

Practical implications

The microstructure and local mechanical properties were studied on L-PBF platform with deposited walls of various thicknesses. Subsequently, a detailed analysis was conducted on real components (impellers) made of maraging steel, commonly used in tooling, automotive and aerospace industries.

Originality/value

The broadly understood quality of manufactured parts is crucial for their reliable and long-lasting operation. The findings presented in the manuscript allow the readers better understanding of the connection between deposition parameters, post-processing, microstructure and mechanical performance of additive manufacturing-processed parts.

Article
Publication date: 8 February 2019

Blaoui Mohammed Mossaab, Mokhtar Zemri and Mustapha Arab

The purpose of this paper is to evaluate the effects of medium carbon steel microstructure on the tensile strength and fatigue crack growth (FCG) behavior.

Abstract

Purpose

The purpose of this paper is to evaluate the effects of medium carbon steel microstructure on the tensile strength and fatigue crack growth (FCG) behavior.

Design/methodology/approach

To achieve this aim, four different heat treatment methods (normalizing, quenching, tempering at 300°C and tempering at 600°C) were considered. Microstructural evolution was investigated by scanning electron microscopy. FCG rate tests were conducted on the resultant microstructures with compact tension specimens at room temperature by a standard testing method.

Findings

The results show that the normalized microstructure had the largest number of cycles to failure, indicating a high fatigue resistance, followed by the as received, tempered at 600°C, tempered at 300°C and quenched microstructure.

Originality/value

The paper shows the influence of the microstructure on the fatigue-propagation behavior with the definition of the Paris parameters of each heat treatment condition.

Details

International Journal of Structural Integrity, vol. 10 no. 1
Type: Research Article
ISSN: 1757-9864

Keywords

Article
Publication date: 25 January 2023

Kashif Ishfaq, Zafar Abas, M. Saravana Kumar and Muhammad Arif Mahmood

This study aims to outline the current challenges in ultrasonic additive manufacturing (AM). AM has revolutionized manufacturing and offers possible solutions when conventional…

Abstract

Purpose

This study aims to outline the current challenges in ultrasonic additive manufacturing (AM). AM has revolutionized manufacturing and offers possible solutions when conventional techniques reach technological boundaries. Ultrasonic additive manufacturing (UAM) uses mechanical vibrations to join similar or dissimilar metals in three-dimensional assemblies. This hybrid fabrication method got attention due to minimum scrap and near-net-shape products.

Design/methodology/approach

This paper reviews significant UAM areas in process parameters such as pressure force, amplitude, weld speed and temperature. These process parameters used in different studies by researchers are compared and presented in tabular form. UAM process improvements and understanding of microstructures have been reported. This review paper also enlightens current challenges in the UAM process, process improvement methods such as heat treatment methods, foil-to-foil overlap and sonotrode surface roughness to increase the bond quality of welded parts.

Findings

Results showed that UAM could solve various problems and produce net shape products. It is concluded that process parameters such as pressure, weld speed, amplitude and temperature greatly influence weld quality by UAM. Post-weld heat treatment methods have been recommended to optimize the mechanical strength of ultrasonically welded joints process parameters. It has been found that the tension force is vital for the deformation of the pre-machined structures and for the elongation of the foil during UAM bonding. It is recommended to critically investigate the mechanical properties of welded parts with standard test procedures.

Originality/value

This study compiles relevant research and findings in UAM. The recent progress in UAM is presented in terms of material type, process parameters and process improvement, along with key findings of the particular investigation. The original contribution of this paper is to identify the research gaps in the process parameters of ultrasonic consolidation.

Details

Rapid Prototyping Journal, vol. 29 no. 6
Type: Research Article
ISSN: 1355-2546

Keywords

Article
Publication date: 1 March 1991

A.J. Birkett and P.M. Braiden

The result of a Teaching Company Scheme between the University of Newcastle‐upon‐Tyne and Eaton Ltd (axle division), Newton Aycliffe, is presented. The programme was devel‐.pb…

Abstract

The result of a Teaching Company Scheme between the University of Newcastle‐upon‐Tyne and Eaton Ltd (axle division), Newton Aycliffe, is presented. The programme was devel‐.pb oped to address quality problems encountered in the manufacture of the main driving gears in truck axles. There had been quality‐related rejections of gearsets in the plant and by customers. The nature of the problems was essentially unknown; it was generally termed “distortion” and was thought to be related to the heat treatment process. The approach to quality appraisal in two areas of the plant is described and a description of the production environment is outlined. The use of quality procedures and reporting systems for quantitative analysis is developed. Among the major findings are: the need for communication; the important role of simple quality systems; the need to identify material quality and process‐induced variables.

Details

International Journal of Quality & Reliability Management, vol. 8 no. 3
Type: Research Article
ISSN: 0265-671X

Keywords

Article
Publication date: 7 July 2020

Wangping Wu, Xiang Wang, Qun Wang, Jianwen Liu, Yi Zhang, Tongshu Hua and Peng Jiang

The purpose of this paper is to maraging 18Ni-300 steel fabricate by powder bed based selective laser melting (SLM) process. Microstructure and mechanical properties of the…

Abstract

Purpose

The purpose of this paper is to maraging 18Ni-300 steel fabricate by powder bed based selective laser melting (SLM) process. Microstructure and mechanical properties of the maraging steel part before and after heat treatment at a slow cooling rate were investigated.

Design/methodology/approach

The microstructure of the printed part was observed by optical microscopy and scanning electron microscopy. The phases were determined by X-ray diffraction. The surface roughness of the part was recorded by a profilometer. The tensile properties and microhardness of the parts before and after heat treatment were characterized by an electronic universal tensile testing machine and a Vickers hardness tester, respectively.

Findings

Maraging 18Ni-300 steel part comprised of the martensitic phase and a small fraction of austenite phase. After heat treatment, the volume fraction of austenite slightly increased. The surface roughness of the part was about 96 µm. The printed part was dense, but irregular pores were present. The yield strength, ultimate tensile strength (UTS), elongation and Young’s modulus of as-fabricated parts were 554.7 MPa, 1173.1 MPa, 10.9% and 128.9 GPa, respectively. The yield strength, UTS, elongation and Young’s modulus of as-treated parts were 2065 MPa, 2225 MPa, 4.2% and 142.5 GPa, respectively. The microhardness values of surface and cross-section of the as-fabricated part were 407.1 HV and 443.0 HV, respectively. After short-time heat treatment, the microhardness values of the surface and cross-section of the part were 542.7 HV and 567.3 HV, respectively. After long-time heat treatment, the microhardness values of the surface and cross-section of the part were 524.4 HV and 454.8 HV, respectively. The microhardness and tensile strength increased significantly with decreasing elongation due to the changes in phases and microstructure of the parts after heat treatment.

Originality/value

This work studied the effect of heat treatment at 550°C combined with a subsequent slow cooling rate on microstructure and mechanical properties of maraging 18Ni-300 steel obtained by the powder bed based SLM process.

Details

Rapid Prototyping Journal, vol. 26 no. 8
Type: Research Article
ISSN: 1355-2546

Keywords

1 – 10 of over 12000