Search results

1 – 5 of 5
Article
Publication date: 8 May 2018

Rajeev Kumar, Sanjeev Bhandari, Atul Goyal and Yogesh Kumar Singla

This paper aims to cover all the aspects of development, investigation and analysis phases to evaluate the slurry erosion performance of test coatings. The powders having…

Abstract

Purpose

This paper aims to cover all the aspects of development, investigation and analysis phases to evaluate the slurry erosion performance of test coatings. The powders having composition of Ni-20Al2O3 and Ni-15Al2O3-5TiO2 were deposited on CA6NM grade turbine steel by using high velocity flame spray (HVFS) technique. The characterization of the coatings was done with the help of SEM/EDS and XRD techniques. Various properties such as micro-hardness and bonding strength of the coatings were also evaluated. Thereafter, these coatings were subjected to an indigenously developed high speed slurry erosion tester at different levels of rotational speed, erodent particle size and slurry concentration. The effect of these parameters on the erosion behavior of coatings was also evaluated. The slurry erosion tests and SEM of the eroded surfaces revealed remarkable improvement in slurry erosion resistance of Ni-15Al2O3-5TiO2 coating in comparison with Ni-20Al2O3 coating.

Design/methodology/approach

Two different compositions of HVFS coating were developed onto CA6NM steel. Subsequently, these coatings were evaluated by means of mechanical and microstructural characterization. Further, slurry erosion testing was done to analyze the erosive wear behavior of developed coatings.

Findings

The coatings were successfully developed by HVFS process. Cross-sectional microscopic analysis of sprayed coatings revealed a continuous and defect-free contact between substrate and coating. Ni-15Al2O3-5TiO2 coating showed higher value of bond strength in comparison with Ni-20Al2O3 coating. Under all the testing conditions, Ni-15Al2O3-5TiO2 coatings showed higher resistance to slurry erosion in comparison with Ni-20Al2O3 coatings. Rotational speed, average particle size of erodent and slurry concentration were found to have proportional effect on specific mass loss of coatings. The mixed behavior (brittle as well as ductile) of the material removal mechanism was observed for the coatings.

Originality/value

From the literature review, it was found that researchers have documented the various studies on Ni-Al2O3, Ni-TiO2 and Al2O3-TiO2 coatings. No one has ascertained the synergetic effect of Alumina and Titania on the slurry erosion performance of Nickel-based coating. In view of this, the authors have developed Ni-Al2O3 and Ni-Al2O3-TiO2 coatings, and an attempt has been made to compare their mechanical, microstructural and slurry erosion characteristics.

Details

Industrial Lubrication and Tribology, vol. 70 no. 4
Type: Research Article
ISSN: 0036-8792

Keywords

Article
Publication date: 27 November 2018

Sarbjit Kaur, Niraj Bala and Charu Khosla

The biomaterials are natural or synthetic materials used to improve quality of life either by replacing tissue/organ or assisting their function in medical field. The purpose of…

251

Abstract

Purpose

The biomaterials are natural or synthetic materials used to improve quality of life either by replacing tissue/organ or assisting their function in medical field. The purpose of the study is to analyze the hydroxyapatite (HAP), HAP-TiO2 (25 percent) composite coatings deposited on 316 LSS by High Velocity Flame Spray (HVFS) technique.

Design/methodology/approach

The coatings exhibit almost uniform and dense microstructure with porosity (HAP = 0.153 and HAP-TiO2 composite = 0.138). Electrochemical corrosion testing was done on the uncoated and coated specimens in Ringer solution (SBF). As-sprayed coatings were characterized by XRD, SEM/EDS and cross-sectional X-ray mapping techniques before and after dipping in Ringer solution. Microhardness of composite coating (568.8 MPa) was found to be higher than HAP coating (353 MPa).

Findings

During investigations, it was observed that the corrosion resistance of steel was found to have increased after the deposition of HAP and HAP-TiO2 composite coatings. Thus, coatings serve as an effective diffusion barrier to prohibit the diffusion of ions from the SBF into the substrate. Composite coatings have been found to be more corrosion resistant as compared to HAP coating in the simulated body fluid.

Research limitations/implications

It has been concluded that corrosion resistance of HAP as well as composite coating is because of the desirable microstructural changes such as low porosity high microhardness and flat splat structures in coatings as compared to bare specimen.

Practical implications

This study is useful in the selection of biomedical implants.

Social implications

This study is useful in the field of biomaterials.

Originality/value

No reported literature on corrosion behavior of HAP+ 25%- TiO2 has been noted till now using flame spray technique. The main focus of the study is to investigate the HAP as well as composite coatings for biomedical applications.

Details

Anti-Corrosion Methods and Materials, vol. 66 no. 1
Type: Research Article
ISSN: 0003-5599

Keywords

Article
Publication date: 8 July 2019

Jashanpreet Singh

The purpose of this study is to analyze the slurry erosion failure of Ni-20Cr (Ni-Cr2O3), Ni-20Al (Ni-Al2O3) and Al-20Ti (Al2O3-TiO2) coatings deposited on SS316L by the…

126

Abstract

Purpose

The purpose of this study is to analyze the slurry erosion failure of Ni-20Cr (Ni-Cr2O3), Ni-20Al (Ni-Al2O3) and Al-20Ti (Al2O3-TiO2) coatings deposited on SS316L by the high-velocity oxy-fuel process.

Design/methodology/approach

Slurry erosion experiments were conducted using a pot type erosion tester at different velocities 1.81, 2.71, 3.61 and 4.59 m/s for the time duration of 90-180 minutes. Fly ash and bottom ash were used as erodent media; the concentration of mass flux was taken as 30-60 wt. per cent. Artificial neural network (ANN) method was used to simulate the slurry erosion for thermally sprayed coatings.

Findings

Slurry erosion of coatings increases non-linearly with an increase in experimental durations, mass flux and velocity. Slurry erosion of Ni-20Cr and Ni-20Al layers was found to be maximum at 60° impingement angle, whereas 30° for SS316L and 45° for Al-20Ti coating. Slurry erosion performance of SS316L was improved by 2.56-3.19 times by depositing Ni-20Cr and Ni-20Al layers, whereas it improved 1.15-1.75 times by Al-20Ti coating. The slurry erosion SS316L was found almost 1.35 ± 1.28 times greater than that of the Ni-20Al coating, whereas it was to be 1.12 ± 1.36 times greater than Al-20Ti. Ni-20Al-coated SS316L showed a lower value of slurry erosion than Al-20Ti-coated SS316L.

Practical implications

Stainless Steel SS316L is widely used in hydraulic machinery (such as turbines, pumps, valves, fittings, etc.) of hydraulic and thermal power plants, chemical industry and marine industry. Therefore, the deposition of ductile and brittle coatings is a better option for their durable performance.

Originality/value

Erosion wear of Ni-20Cr, Ni-20Al and Al-20Ti coatings was successfully simulated by using an artificial neural network model by supplying experimental data as a target.

Details

Industrial Lubrication and Tribology, vol. 71 no. 7
Type: Research Article
ISSN: 0036-8792

Keywords

Article
Publication date: 10 June 2021

Jashanpreet Singh

The purpose of this paper is to carry out erosion wear investigation on high-velocity oxy-fuel (HVOF)-deposited 86WC-10Co4Cr and synergistic Ni/Chromia powder (i.e. 80Ni-20Cr2O3

Abstract

Purpose

The purpose of this paper is to carry out erosion wear investigation on high-velocity oxy-fuel (HVOF)-deposited 86WC-10Co4Cr and synergistic Ni/Chromia powder (i.e. 80Ni-20Cr2O3) on AISI 316L.

Design/methodology/approach

Design of experiments-artificial neural network (DOE-ANN) methodology was adopted to calculate the erosion wear. Taguchi’s orthogonal array L16 (42) was used to perform set-of-erosion experiments followed by lower-the-better rule. The artificial neural network (ANN) model is used on erosion wear data obtained from the experiments.

Findings

Experimental results indicate that 86WC-10Co4Cr provided better erosion wear resistance as compared to Ni/Chromia. The erosion wear of 86WC-10Co4Cr and synergistic Ni/Chromia coatings increases with an increase in time duration, solid concentration and time. The magnitude of erosion generated by ashes was comparatively lower than sand. The arithmetic mean roughness (Ra) of finished AISI 316L, 86WC-10Co4Cr and Ni/Chromia coating was found as 0.46 ± 0.13, 6.50 ± 0.16 and 7.04 ± 0.23 µm, respectively. Surface microhardness of AISI 316L, 86WC-10Co4Cr and Ni/Chromia coating was found as 197 ± 18, 1,156 ± 18 and 1,021± 21 HV, respectively.

Practical implications

The present results can be useful for estimation of erosion wear in slurry pumps used in mining industry for the conveying of sand and in thermal power plants for the conveying of ashes to the dyke area.

Originality/value

The erosion wear of HVOF-sprayed 86WC-10Co4Cr and Synergistic Ni/Chromia powders was studied experimentally as well as predicted by the ANN model, and wear mechanisms are well discussed by scanning electron micrographs.

Details

Industrial Lubrication and Tribology, vol. 73 no. 5
Type: Research Article
ISSN: 0036-8792

Keywords

Article
Publication date: 3 April 2019

Jashanpreet Singh, Satish Kumar and S.K. Mohapatra

This study/paper aims to investigate the erosion wear performance of Ni-based coatings [Ni-Cr-O and NiCrBSiFe-WC(Co)] under sand-water slurry conditions.

Abstract

Purpose

This study/paper aims to investigate the erosion wear performance of Ni-based coatings [Ni-Cr-O and NiCrBSiFe-WC(Co)] under sand-water slurry conditions.

Design/methodology/approach

A high-velocity oxy-fuel (HVOF) process was used to deposit the Ni-based coatings [Ni-Cr-O and NiCrBSiFe-WC(Co)] on the surface of stainless steel (SS 316L) substrate. A Ducom TR-41 erosion tester was used to conduct the tribological experiments on bare/HVOF coated SS 316L. The erosion wear experiments were carried out for different time durations (1.30-3.00 h) at different impact angles (0-60°) by running the pot tester at different rotational speeds (600-1,500 rev/min). The solid concentration of sand slurry was taken in the range of 30-60 Wt.%. The surface roughness of Ni-based coated surfaces was also measured along the transverse length of the specimens.

Findings

Results show the arithmetic mean roughness (Ra) values of Ni-Cr-O and NiCrBSiFe-WC coated SS-316L were 7.04 and 6.67 µm, respectively. The erosion wear SS-316L was almost 3.5 ± 1.5 times greater than that of the NiCrBSiFe-WC coatings. NiBCrSi-WC(Co) sprayed SS-316L showed lower erosion wear than Ni-Cr-O sprayed SS-316L. Microscopically, the eroded Ni-Cr-O coating underwent plowing, microcutting and craters. Ni-Cr-O coating have shown the ductile nature of erosion wear mechanism. NiBCrSi-WC(Co) surface underwent craters, plowing, carbide/boride pullout, fractures and intact. Erosion wear mechanisms on the eroded surface of NiBCrSi-WC(Co) were neither purely ductile nor brittle.

Practical implications

It is a useful technique to estimate the erosion wear of hydraulic machinery coated with Ni-based coatings imposed under mining conditions.

Originality/value

The erosion wear performance of HVOF-sprayed Ni-Cr-O and NiCrBSiFe-WC(Co) powders was investigated through extensive experimentation, and the results are well supported by scanning electron micrographs and 3D topology.

Details

Industrial Lubrication and Tribology, vol. 71 no. 4
Type: Research Article
ISSN: 0036-8792

Keywords

1 – 5 of 5