Search results

1 – 10 of over 2000
Article
Publication date: 13 May 2019

Seyed Abdolkarim Payambarpour, Mohammad Alhuyi Nazari, Mohammad Hossein Ahmadi and Ali J. Chamkha

This study aims to investigate heat and mass transfer in a one-row heat exchanger. The required equations are obtained based on two-dimensional model analysis in a cell of the…

Abstract

Purpose

This study aims to investigate heat and mass transfer in a one-row heat exchanger. The required equations are obtained based on two-dimensional model analysis in a cell of the heat exchanger. By using finite difference approach, the obtained equations are solved to determine distribution of temperature and the efficiency of the heat exchanger in the case of partially wet surface. In this research, Lewis Number as unity and water vapor saturation as parabolic are assumed. Obtained results show that increase in thermal conductivity fin leads to decreasing thermal resistance; therefore, temperature changes in radial from center to out of fin are reduced and efficiency of fin increases.

Design/methodology/approach

In this regard, fin material plays a significant role in fin efficiency. Changes in airflow also result in an efficiency increase by temperature and relative humidity, and efficiency is decreased by airflow velocity increase, and these changes are almost linear. Moreover, the fins with more wet surface are more sensitive to changes in fin dimensions and air flow characteristics, and it is a result of conjugate heat transfer mechanism, in which latent heat transfer in the fins with more wet surface has a significant role.

Findings

Thermal property and geometry of the fin under wet conditions play a more important role than the fin under dry conditions. Changes in airflow result in an efficiency increase by temperature and relative humidity, and efficiency is decreased by airflow velocity increase, and these changes are almost linear. Fins with more wet surface are more sensitive to changes in fin dimensions and air flow characteristics.

Originality/value

Effects of the temperature of water supply and mass flow rate were considered in the study. The results had good agreement with actual data.

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. 29 no. 10
Type: Research Article
ISSN: 0961-5539

Keywords

Article
Publication date: 2 September 2021

Fang Zhao, Abhijit Barua and Jung Hoon Kim

The purpose of this study is to examine the effect of consolidating off-balance sheet entities on firm-level investment efficiency. Financial Accounting Standards Board…

Abstract

Purpose

The purpose of this study is to examine the effect of consolidating off-balance sheet entities on firm-level investment efficiency. Financial Accounting Standards Board Interpretation No. 46, consolidation of variable interest entities – an Interpretation of ARB No. 51 (FIN 46) is used as a quasi-exogenous shock to financial reporting in this study.

Design/methodology/approach

The authors empirically test the change of investment efficiency for a sample of firms affected by FIN 46 in the post-FIN 46 periods. In the regression, a group of matched pairs selected from unaffected firms is used as the control sample and firm characteristics are used as control variables.

Findings

The authors find that firms affected by FIN 46 experience improvement in investment efficiency after adopting the standard compared to unaffected firms. The authors also document that FIN 46 firms’ level of investment decreases after FIN 46 compared to unaffected firms. These empirical results suggest that the improvement in investment efficiency is likely to be achieved by the reduction in over-investment. Further analyses show that amongst the affected firms, firms consolidating off-balance sheet special purpose entities (SPEs) improve investment efficiency mainly by reducing over-investment, whereas firms avoiding the consolidation of SPEs do not display such tendency.

Originality/value

This study contributes to the literature on the relation between financial reporting and investment efficiency, as well as the literature on the impact of FIN 46. To the best of the authors’ knowledge, this study is the first to examine the relation between the consolidation of off-balance sheet entities and investment efficiency.

Details

Accounting Research Journal, vol. 35 no. 3
Type: Research Article
ISSN: 1030-9616

Keywords

Article
Publication date: 15 July 2022

Upendra Bajpai, Palash Soni, Vivek Kumar Gaba and Shubhankar Bhowmick

When the temperature of an air conditioning unit’s fin surface goes below its dew point temperature, condensation forms on the unit’s surface. As a result, the cooling coil’s…

Abstract

Purpose

When the temperature of an air conditioning unit’s fin surface goes below its dew point temperature, condensation forms on the unit’s surface. As a result, the cooling coil’s performance is compromised. By altering the cross-section and heat conductivity of the fins, the performance of such systems can be improved. This study aims to analyze the thermal performance of longitudinal fins made up of a variable thickness (assuming constant weight) and functionally graded material.

Design/methodology/approach

Different grading parameters are considered for an exponential variation of thermal conductivity. The humidity ratio and the corresponding fin temperatures are assumed to follow a cubic relationship. The Bvp4c solver in MATLAB® is used to solve the differential heat transfer equation resulting from balancing heat transfer in a small segment.

Findings

Validation of the methodology is provided by previous research presented in this area. For different combinations of grading parameters, geometry parameters and relative humidity, the normalized temperature distribution along the fin length and fin efficiency contours are plotted, and the results are very promising.

Originality/value

When compared to the efficiency of an isotropic homogenous rectangular longitudinal fin with optimal geometry and grading parameters, a 17% increase in efficiency under fully wet conditions is measured. When it comes to fin design, these efficiency contour plots are extremely useful.

Details

World Journal of Engineering, vol. 20 no. 6
Type: Research Article
ISSN: 1708-5284

Keywords

Article
Publication date: 6 July 2021

Mustafa Turkyilmazoglu

This paper aims to seek purely analytical results relying on the physical parameters including the temperature jump parameter.

Abstract

Purpose

This paper aims to seek purely analytical results relying on the physical parameters including the temperature jump parameter.

Design/methodology/approach

The exponential fin profiles and heat transfer enhancement influenced by a temperature jump at the base are the main targets of this paper.

Findings

The introduced temperature slip at the base penetrates through the surface of the fin and reorganizes the distribution of temperature all over the surface. The overall impact of the temperature jump on the fin efficiency is such that it acts to lower the fin efficiency. However, the efficiency of the exponential fin is increasing for growing shape exponential fins as compared to the rectangular and decaying ones. Hence, exponential fins amenable to certain temperature jump has significance in technological cooling processes. Finally, the optimum dimensions regarding the base fin thickness and the fin length of the exponential profiles are assessed by means of optimizing the base heat transfer rate given a cross-sectional area.

Originality/value

Exact solutions are provided for optimum exponential type fins subjected to a temperature jump. The optimum dimensions regarding the base fin thickness and the fin length of the exponential profiles are assessed.

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. 32 no. 3
Type: Research Article
ISSN: 0961-5539

Keywords

Article
Publication date: 2 January 2023

Parvinder Kaur and Surjan Singh

In this paper, temperature distribution and fin efficiency in a moving porous fin have been discussed. The heat transfer equation is formulated by using Darcy's model. Heat…

Abstract

Purpose

In this paper, temperature distribution and fin efficiency in a moving porous fin have been discussed. The heat transfer equation is formulated by using Darcy's model. Heat transfer coefficient and thermal conductivity vary with temperature. The surface emissivity of the fin varies with temperature as well as with wavelength. Thermal conductivity is taken as a linear and quadratic form of temperature. The entire analysis of the paper is presented in non-dimensional form.

Design/methodology/approach

In this study, a new mathematical model is investigated. The novelty of this model is surface emissivity which is considered temperature and wavelength dependent. Another interesting point is the addition of porous material. The Legendre wavelet collocation method has been used to solve the nonlinear heat transfer equation. Numerical simulations are carried out in MATLAB software.

Findings

An attempt has been made to discuss temperature distribution in the presence of porosity and wavelength-temperature-dependent surface emissivity. The effect of various parameters on temperature has been discussed, including thermal conductivity, emissivity, convection-radiation, Peclet number, sink temperature, exponent “n” and porosity. Fin efficiency is also calculated for some parameters. According to the study, heat transfer rate increases with higher radiation-convection, emissivity, wavelength and porosity parameters.

Originality/value

The numerical results are carried out by using the Legendre wavelet collocation method, which has been compared with exact results in a particular case and found to be in good agreement. The percent error is calculated to find the error between the current method and the exact result. A comparison of the obtained results with the previous data is presented to validate the numerical results.

Details

Multidiscipline Modeling in Materials and Structures, vol. 19 no. 2
Type: Research Article
ISSN: 1573-6105

Keywords

Article
Publication date: 16 September 2013

Erdem Cuce and Pinar Mert Cuce

The purpose of this paper is to investigate the effects of concavity level on performance parameters of a parabolic fin under the influences of natural convection and radiation…

Abstract

Purpose

The purpose of this paper is to investigate the effects of concavity level on performance parameters of a parabolic fin under the influences of natural convection and radiation.

Design/methodology/approach

Computational fluid dynamics software (FLUENT) is used for the heat transfer analysis. Optimum fin geometry is searched in order to maximize the heat dissipation from fin to the ambient while minimizing the volume of fin.

Findings

The fin profile with concavity level of 2 dissipates 14.92, 17.53, 24.33 and 26.60 percent more heat and uses 34.62, 49.64, 57.66 and 63.09 percent much material compared to the fin with concavity level of 4, 6, 8 and 10, respectively. It is also observed that the amount of heat dissipation per mass considerably increases with increasing concaveness.

Research limitations/implications

The research was carried out for five different concavity levels in the range of 2-10.

Practical implications

The results can be used in passive cooling applications of PV systems. Also, heat sinks for CPU cooling can be redesigned with respect to the results obtained from the research.

Originality/value

In this paper, effects of concavity level on performance parameters of a parabolic fin are investigated for the first time. It is observed from the numerical results that the fin profile with higher concavity levels provides a cheaper and lighter heat dissipation device so it is recommended for the applications where the weight and the cost are primary considerations such as cooling of photovoltaics.

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. 23 no. 7
Type: Research Article
ISSN: 0961-5539

Keywords

Article
Publication date: 1 April 1933

D.R. Pye

IT has been stated above that the rate of heat transfer is closely proportional to the temperature difference between the plate and the free air stream, and over the laminar…

Abstract

IT has been stated above that the rate of heat transfer is closely proportional to the temperature difference between the plate and the free air stream, and over the laminar portion it will also be proportional to the conductivity of the air. It remains to consider to what extent the actual temperature of the air in the boundary layer will influence the rate of heat transfer. The conductivity of air increases with temperature by reason of the increased molecular velocities, and we might expect, therefore, that the hotter the surface the greater will be the rate of heat transfer per unit of temperature difference above that of the air. This is, in fact, found to be the case.

Details

Aircraft Engineering and Aerospace Technology, vol. 5 no. 4
Type: Research Article
ISSN: 0002-2667

Article
Publication date: 23 March 2012

D.D. Ganji, M. Rahimi and M. Rahgoshay

The purpose of this paper is to determine the fin efficiency of convective straight fins with temperature dependent thermal conductivity by using Homotopy Perturbation Method.

Abstract

Purpose

The purpose of this paper is to determine the fin efficiency of convective straight fins with temperature dependent thermal conductivity by using Homotopy Perturbation Method.

Design/methodology/approach

Most engineering problems, especially heat transfer equations are in nonlinear form. Homotopy Perturbation Method (HPM) has been applied to solve a wide series of nonlinear differential equations. In this paper, HPM is used for obtaining the fin efficiency of convective straight fins with temperature‐dependent thermal conductivity. Comparison of the results with those of Homotopy Perturbation Method, exact solution, numerical results and Adomian's decomposition method (ADM) were been done by Cihat Arslanturk.

Findings

Results show that both Homotopy Perturbation Method and ADM applied to the nonlinear equations were capable of solving them with successive rapidly convergent approximations without any restrictive assumptions or transformations causing changes in the physical properties of the problem. Moreover, adding up the number of iterations leads to explicit solution for the problem. The results are just obtained with two iterations. This shows the accuracy and great potential of this method. Finally, it can be seen that, with increase of thermo‐geometric fin parameter (v), the fin efficiency increases too.

Originality/value

The results demonstrate good validity and great potential of the HPM for Heat Transfer equations in engineering problems.

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. 22 no. 2
Type: Research Article
ISSN: 0961-5539

Keywords

Article
Publication date: 28 October 2014

Z.X. Yuan and L. Chen

The purpose of this paper is to study the thermal and flow characteristics of a single annually finned-tube condenser. The velocity and the temperature field inside the fin

Abstract

Purpose

The purpose of this paper is to study the thermal and flow characteristics of a single annually finned-tube condenser. The velocity and the temperature field inside the fin channel are revealed. Changes of the heat transfer and the flow resistance for typical fin configurations are analyzed. The optimal combinations of the fin dimension in terms of the enhancement of heat transfer are suggested.

Design/methodology/approach

The problem has been numerically investigated with the FLUENT software. K-ɛ model is applied in the solution of the turbulent cases. The local and the average feature of the thermal performance and the friction factor are determined. Furthermore, the effect of the fin spacing, the fin height, and the fin thickness on the heat transfer and the flow resistance are verified.

Findings

The numerical results reveal that the fin spacing is the most influential factor of all fin dimensions not only to the heat transfer but also to the flow resistance. Both the heat transfer and the flow resistance are compared with those related data available in the public literature. On the other hand, the fin height and the fin thickness affect the heat transfer of the condenser in a much less significant way in comparison to that of the fin spacing.

Originality/value

This paper provides some meaningful information of the fin-dimensional effect on the heat transfer and the flow resistance for a single finned tube condenser. For such kind of heat exchanger, the heat transfer coefficient, the friction factor, and the heat transfer amount per unit length tube are all important to describe the performance feature.

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. 24 no. 8
Type: Research Article
ISSN: 0961-5539

Keywords

Article
Publication date: 5 May 2015

AbdulRahim Assaad Khaled

– Heat transfer inside wavy fins is analyzed in this work. The paper aim to discuss this issue.

Abstract

Purpose

Heat transfer inside wavy fins is analyzed in this work. The paper aim to discuss this issue.

Design/methodology/approach

Six different types of wavy fins are considered. The fin equation for each fin type is solved using a high accurate finite difference method. Excellent agreement is obtained between the numerical solution under zero wave amplitude and the exact solution of the plain fin.

Findings

The following wavy fin types and conditions are found to produce larger heat transfer rate and its volumetric value than those for the plain fin and other wavy fins: short fins with parallel wavy profiles and large surface-wave frequency; long fins with symmetric wavy surface around the length axis, positive cross-sectional area gradient at the base, and large surface-wave frequency; and long fins with symmetric wavy profiles around the length axis, positive cross-sectional area gradient at the base, and small surface-wave frequency.

Research limitations/implications

In addition, both fins with symmetric wavy surface around the width axis and parallel wavy surfaces along the width axis have same performance indicators. Also, these wavy fins possess higher fin efficiency than either that of the plain fin or those of the other types of wavy fins.

Originality/value

Finally, heat transfer enhancements in the studied wavy fins are increased by increases in the excess of the surface area, cross-sectional area gradient at the base, arc length and arc width relative to those of the plain fin.

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. 25 no. 4
Type: Research Article
ISSN: 0961-5539

Keywords

1 – 10 of over 2000