Search results

1 – 10 of over 4000
Article
Publication date: 1 June 1993

B.S. MANJUNATHA and T. KANT

This paper attempts to evaluate the transverse stresses that are generated within the interface between two layers of laminated composite and sandwich laminates by using Cℴ finite…

Abstract

This paper attempts to evaluate the transverse stresses that are generated within the interface between two layers of laminated composite and sandwich laminates by using Cℴ finite element formulation of higher‐order theories. These theories do not require the use of a fictitious shear correction coefficient which is usually associated with the first‐order Reissner‐Mindlin theory. The in‐plane stresses are evaluated by using constitutive relations. The transverse stresses are evaluated through the use of equilibrium equations. The integration of the equilibrium equations is attempted through forward and central direct finite difference techniques and a new approach, named as, an exact surface fitting method. Sixteen and nine‐noded quadrilateral Lagrangian elements are used. The numerical results obtained by the present approaches in general and the exact surface fitting method in particular, show excellent agreement with available elasticity solutions. New results for symmetric sandwich laminates are also presented for future comparisons.

Details

Engineering Computations, vol. 10 no. 6
Type: Research Article
ISSN: 0264-4401

Keywords

Article
Publication date: 29 July 2014

Xiang Gao, Hua Wang and Guanlong Chen

Fitting evenness is one key characteristic for three-dimensional objects' optimal fit. The weighted Gaussian imaging method is developed for fitting evenness of auto body…

1777

Abstract

Purpose

Fitting evenness is one key characteristic for three-dimensional objects' optimal fit. The weighted Gaussian imaging method is developed for fitting evenness of auto body taillight fitting optimization.

Design/methodology/approach

Fitting boundary contours are extracted from scanning data points. Optimal fitting target is represented with gap and flushness between taillight and auto body. By optimizing the fitting position of the projected boundary contours on the Gaussian sphere, the weighted Gaussian imaging method accomplishes optimal requirements of gap and flushness. A scanning system is established, and the fitting contour of the taillight assembly model is extracted to analyse the quality of the fitting process.

Findings

The proposed method accomplishes the fitting optimization for taillight fitting with higher efficiency.

Originality/value

The weighted Gaussian imaging method is used to optimize the taillight fitting. The proposed method optimized the fitting objects' 3-D space, while the traditional fitting methods are based on 2-D algorithm. Its time complexity is O(n3), while those of the traditional methods are O(n5). The results of this research will enhance the understanding of the 3-D optimal fitting and help in systematically improving the productivity and the fitting quality in automotive industry.

Details

Assembly Automation, vol. 34 no. 3
Type: Research Article
ISSN: 0144-5154

Keywords

Article
Publication date: 1 November 1999

Y.T. Lee and L. Fang

Non‐linear transformation of freeform curves and surfaces is useful in computer‐aided design and computer graphics. It is highly desirable that the original and transformed curves…

1104

Abstract

Non‐linear transformation of freeform curves and surfaces is useful in computer‐aided design and computer graphics. It is highly desirable that the original and transformed curves or surfaces are defined using the same representation. But freeform curves and surfaces defined by control points are invariant only under affine transformations, and not so under non‐linear transformations. This paper develops a method that can perform non‐linear transformations of freeform curves to specific accuracies, while retaining the same representation. It involves first applying the transformation to the control points and then modifying them so that the resulting curve and the exact transformed curve are equal at a specific number of points, which is the number of control points. Refinement to the approximation is made by increasing the number of control points. A method for measuring the maximum positional error has been implemented and this is used to facilitate an algorithm for automatic refinement. Extension of the method for surfaces is also given.

Details

Engineering Computations, vol. 16 no. 7
Type: Research Article
ISSN: 0264-4401

Keywords

Article
Publication date: 4 December 2020

Xiaofeng Yao, Jianping Wang, Kaixuan Liu and Shuo Xu

An exact pattern prototype is a prerequisite for female girdle pattern-making. The purpose of this paper is to develop new ways to make girdle pattern prototypes based on 3D…

Abstract

Purpose

An exact pattern prototype is a prerequisite for female girdle pattern-making. The purpose of this paper is to develop new ways to make girdle pattern prototypes based on 3D technology.

Design/methodology/approach

This paper presented two novel methods for creating girdle pattern prototypes. The first one was the girdle's parametric foundation pattern developing method based on 3D geometric modeling. In this method, considering the different characteristics of a female's lower body shape, several models were created to define the relationship between the female's lower body shape and the pattern, such as a side-waist curvature model, an interior-posterior waist-warping model, a buttocks' parametric model and an abdomen parametric model. Then, parameters of drawing the prototype were abstracted to facilitate transforming the 3D geometric model into the 2D pattern. Another method was implemented by 3D virtual modeling and unwrapping. The whole process included surface division, surface reconstruction and surface unwrapping.

Findings

The prototypes created by these two methods were tested using the 3D virtual trying-on examination. Trial tests showed that the patterns can be dressed in the right positions on the virtual model with little pressure. This means that the proportions and shapes of the pattern are correct. The prototypes obtained through the methods proposed in this paper have good effects and high precision. Both methods can be used for making the girdle's foundation pattern.

Originality/value

Two pragmatic approaches of girdle's prototype building have been put forward. The parametric prototype designing method has changed the unconstrained state of free modeling. The pattern structure can be controlled by parameter constraints. In the other method, with 3D scanning and surface modeling technology, personalized girdle's pattern is generated, and the segmentation lines of the girdle can be designed flexibly according to the requirements. These findings also can be used in other tight garments' prototype making.

Details

International Journal of Clothing Science and Technology, vol. 33 no. 4
Type: Research Article
ISSN: 0955-6222

Keywords

Article
Publication date: 8 January 2020

Hailiang Su, Fengchong Lan, Yuyan He and Jiqing Chen

Because of the high computational efficiency, response surface method (RSM) has been widely used in structural reliability analysis. However, for a highly nonlinear limit state…

Abstract

Purpose

Because of the high computational efficiency, response surface method (RSM) has been widely used in structural reliability analysis. However, for a highly nonlinear limit state function (LSF), the approximate accuracy of the failure probability mainly depends on the design point, and the result is that the response surface function composed of initial experimental points rarely fits the LSF exactly. The inaccurate design points usually cause some errors in the traditional RSM. The purpose of this paper is to present a hybrid method combining adaptive moving experimental points strategy and RSM, describing a new response surface using downhill simplex algorithm (DSA-RSM).

Design/methodology/approach

In DSA-RSM, the operation mechanism principle of the basic DSA, in which local descending vectors are automatically generated, was studied. Then, the search strategy of the basic DSA was changed and the RSM approximate model was reconstructed by combining the direct search advantage of DSA with the reliability mechanism of response surface analysis.

Findings

The computational power of the proposed method is demonstrated by solving four structural reliability problems, including the actual engineering problem of a car collision. Compared to specific structural reliability analysis methods, the approach of modified DSA interpolation response surface for structural reliability has a good convergent capability and computational accuracy.

Originality/value

This paper proposes a new RSM technology based on proxy model to complete the reliability analysis. The originality of this paper is to present an improved RSM that adjusts the position of the experimental points judiciously by using the DSA principle to make the fitted response surface closer to the actual limit state surface.

Article
Publication date: 1 April 2005

S. Singare, L. Dichen, L. Bingheng, G. Zhenyu and L. Yaxiong

To develop a computer‐assisted prefabricated implant design and manufacturing system to improve the esthetic outcome in chin surgery.

2493

Abstract

Purpose

To develop a computer‐assisted prefabricated implant design and manufacturing system to improve the esthetic outcome in chin surgery.

Design/methodology/approach

Design methods for medical rapid prototyping (RP) of custom‐fabricated chin augmentation implant are presented in this paper. After a careful preoperative planning based on cephalometric tracing for esthetic assessment, helical computed tomography data were used to create a three‐dimensional model of the deficient mandible. Based on these data, the inner surface of the prosthesis was designed to fit the bone surface exactly. The outer geometry was generated from a dried human mandible to create anatomically correct shape prosthesis. The inner and outer surfaces were then connected, and a solid model resulted. A RP system was used for production of the physical models. The surgical planning was performed using the implants and skull models. The resulting SLA implant is used for the production of a mold, which is used to cast the titanium part. Three patients with a congenital small chin or a small and asymmetric mandible underwent reconstruction with individual prefabricated implant. Mean follow‐up period was 1.5 years.

Findings

This approach showed significant results in chin augmentation. Compared with traditional methods, the intra‐operative fit was excellent. The operating time was reduced. Postoperatively, the patients experienced the restoration of a natural chin contour, so the esthetic outcome was pleasing. Over the mean follow‐up period of 1.5 years, there were no complications and no implant had to be removed. Long‐term excellent esthetic outcomes by using this new technique have recently been reported.

Research limitations/implications

The methods described above suffer from certain limitations. The registration of the mandible template to create the augmentation image requires high skills of the designer. In addition, the use of RP model in preoperative preparation is expensive.

Practical implications

This method not only demonstrates the significant progress in the reconstruction of chin defects using CAD/CAM RP and RT, compared with the conventional methods of chin augmentation surgery, but also provides natural geometrical prosthesis contour design and accurate fabrication and precise fitting of the prosthesis. The advantages of using this technique are that the physical model of the implant is fitted on the skull model so that the surgeon can plan and rehearse the surgery in advance and a less invasive surgical procedure and less time‐consuming reconstructive and an adequate esthetic can result.

Originality/value

This clinical case demonstrated the potential value of CAD/CAM and RP‐based custom fitted and anatomically correct shape prosthesis fabrication and presurgical planning in craniofacial surgery.

Details

Rapid Prototyping Journal, vol. 11 no. 2
Type: Research Article
ISSN: 1355-2546

Keywords

Article
Publication date: 14 June 2019

Wentong Zhang and Yiqing Xiao

Balancing accuracy and efficiency is an important evaluation index of response surface method. The purpose of this paper is to propose an adaptive order response surface method

Abstract

Purpose

Balancing accuracy and efficiency is an important evaluation index of response surface method. The purpose of this paper is to propose an adaptive order response surface method (AORSM) based on univariate decomposition model (UDM).

Design/methodology/approach

First, the nonlinearity of the univariate function can be judged by evaluating the goodness of fit and the error of curve fit rationally. Second, combining UDM with the order analysis of separate component polynomial, an easy-to-implement AORSM is proposed. Finally, several examples involving mathematical functions and structural engineering problems are studied in detail.

Findings

With the proposed AORSM, the orders of component functions in the original response surface can be determined adaptively and the results of those cases in this paper indicate that the proposed method performs good accuracy, efficiency and robustness.

Research limitations/implications

Because just the cases with single failure mode and single MPP are studied in this paper, the application in multi-failure mode and multi-MPP cases need to be investigated in the coming work.

Originality/value

The nonlinearity of the univariate in the response surface can be determined adaptively and the undetermined coefficients of each component function are obtained separately, which reduces the computation dramatically.

Article
Publication date: 7 June 2013

Ruey‐Hor Yen, Chien‐Yu Chen, Ching‐Tang Huang and Pei‐Jing Chen

This work seeks to analyze the heat transfer phenomena of anisotropic thermal conductivity fabrics containing electric conductive yarns.

Abstract

Purpose

This work seeks to analyze the heat transfer phenomena of anisotropic thermal conductivity fabrics containing electric conductive yarns.

Design/methodology/approach

A numerical program, based on a spectral element method, is used to assess the heating fabric with a temperature control model. The study determines suitable parameters for the fabric by evaluating the temperature uniformity on the fabric surface. Effective thermal conductivities of the fabric are obtained by comparing the experimental and numerical results with each other, using a nonlinear least‐square fitting method.

Findings

The results indicate that employing high effective thermal conductivity of non‐electric conductive yarns in a direction perpendicular to electric conductive yarns helps to increase temperature uniformity. However, the effect of the high effective thermal conductivity of electric conductive yarns is not evident. Adopting a short distance between the electric conductive yarns and a thick fabric is also beneficial in increasing temperature uniformity. If the heating fabric is applied in a place where there is easy energy transfer between the surface of the fabric and moving air, collocation with high heating power is needed to maintain the temperature. Choosing an appropriate heating source is essential when considering temperature uniformity and energy savings using a temperature controller.

Originality/value

The findings will be useful in the design of heating fabrics.

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. 23 no. 5
Type: Research Article
ISSN: 0961-5539

Keywords

Article
Publication date: 1 November 1941

Charles B. Lyman

MUCH reference is made in the aeronautical field to the flutter problem and the subject is receiving the attention of many persons engaged in research, testing, and design. Many…

Abstract

MUCH reference is made in the aeronautical field to the flutter problem and the subject is receiving the attention of many persons engaged in research, testing, and design. Many aeronautical engineers are well acquainted with some aspect of the problem, and although only a few are concerned with its several phases it is safe to say that all aeronautical men regard it with some degree of interest. It is fitting, therefore, that although it has been adequately treated by many authors from other points of view, a statement be here made summarizing the flutter problem as one of the aeroplane designer. In order that the exact nature of this problem be appreciated it is first necessary that a few of the fundamentals be reviewed.

Details

Aircraft Engineering and Aerospace Technology, vol. 13 no. 11
Type: Research Article
ISSN: 0002-2667

Article
Publication date: 29 January 2024

Francesco Romanò, Mario Stojanović and Hendrik C. Kuhlmann

This paper aims to derive a reduced-order model for the heat transfer across the interface between a millimetric thermocapillary liquid bridge from silicone oil and the…

Abstract

Purpose

This paper aims to derive a reduced-order model for the heat transfer across the interface between a millimetric thermocapillary liquid bridge from silicone oil and the surrounding ambient gas.

Design/methodology/approach

Numerical solutions for the two-fluid model are computed covering a wide parametric space, making a total of 2,800 numerical flow simulations. Based on the computed data, a reduced single-fluid model for the liquid phase is devised, in which the heat transfer between the liquid and the gas is modeled by Newton’s heat transfer law, albeit with a space-dependent Biot function Bi(z), instead of a constant Biot number Bi.

Findings

An explicit robust fit of Bi(z) is obtained covering the whole range of parameters considered. The single-fluid model together with the Biot function derived yields very accurate results at much lesser computational cost than the corresponding two-phase fully-coupled simulation required for the two-fluid model.

Practical implications

Using this novel Biot function approach instead of a constant Biot number, the critical Reynolds number can be predicted much more accurately within single-phase linear stability solvers.

Originality/value

The Biot function for thermocapillary liquid bridges is derived from the full multiphase problem by a robust multi-stage fit procedure. The derived Biot function reproduces very well the theoretical boundary layer scalings.

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. 34 no. 4
Type: Research Article
ISSN: 0961-5539

Keywords

1 – 10 of over 4000