Search results

1 – 10 of over 24000
Article
Publication date: 13 October 2022

Eyyüp Öksüztepe, Ufuk Kaya and Hasan Kurum

More electric aircraft (MEA) is defined as the extensive usage of electric power in aircraft. The demand for electric power in new generation aircraft rises due to environmental…

Abstract

Purpose

More electric aircraft (MEA) is defined as the extensive usage of electric power in aircraft. The demand for electric power in new generation aircraft rises due to environmental and economic considerations. Hence, efficient and reliable starter/generators (SGs) are trending nowadays. The conventional main engine starting system and power generation system can be replaced with an individual SG. The constraints of the SG should be investigated to handle the aviation requirements. Even though the SG is basically an electric machine, it requires a multidisciplinary study consisting of electromagnetic, thermal and mechanical works to cope with aviation demands. This study aims to review conventional and new-generation aircraft SGs from the perspective of electric drive applications.

Design/methodology/approach

First of all, the importance of the MEA concept has been briefly explained. Also, the historical development and the need for higher electrical power in aircraft have been indicated quantitatively. Considering aviation requirements, the candidate electrical machines for aircraft SG have been determined by the method of scoring. Those machines are compared over 14 criteria, and the most predominant of them are specified as efficiency, power density, rotor thermal tolerance, high-speed capability and machine complexity. The features of the most suitable electrical machine are pointed out with data gathered from empirical studies. Finally, the trending technologies related to efficient SG design have been explained with numeric datasets.

Findings

The induction motor, switched reluctance motor and permanent magnet synchronous motor (PMSM) are selected as the candidate machines for SGs. It has been seen that the PMSM is the most preferable machine type due to its efficient operation in a wide range of constant power and speed. It is computationally proven that the using amorphous magnetic alloys in SG cores increases the machine efficiency more. Also, the benefits of high voltage direct current (HVDC) use in aircraft have been explained by a comparison of different aircraft power generation standards. It is concluded that the HVDC use in aircraft decreases total cable weight and increases aircraft operation efficiency. The thermal and mechanical tolerance of the SG is also vital. It has been stated that the liquid cooling techniques are suitable for SGs.

Originality/value

The demand for electrical power in new generation aircraft is increasing. The SG can be used effectively and efficiently instead of conventional systems. To define requirements, constraints and suggestions, this study investigates the SGs from the perspective of electric drive applications.

Details

Aircraft Engineering and Aerospace Technology, vol. 95 no. 3
Type: Research Article
ISSN: 1748-8842

Keywords

Article
Publication date: 1 January 2013

Massimo Barcaro and Nicola Bianchi

The purpose of this paper is to give an overview of the design issues of permanent magnet machines for the hybrid electric and plug‐in electric vehicles, including railway…

Abstract

Purpose

The purpose of this paper is to give an overview of the design issues of permanent magnet machines for the hybrid electric and plug‐in electric vehicles, including railway traction and naval propulsion.

Design/methodology/approach

Focus is given on both synchronous permanent magnet and reluctance machines. An overview of the design rules are provided, covering the topics of: fractional‐slot windings, fault‐tolerant configurations, flux‐weakening capability, and torque quality.

Findings

The peculiarities of these machines and the advanced design considerations to fit the automotive requirements are analyzed.

Originality/value

The paper includes a wide description of innovative electrical machines for electric vehicles, including not only the traction capability, but also analysis of features as weight reduction, torque ripple reduction, increase of fault tolerance, and so on.

Details

COMPEL - The international journal for computation and mathematics in electrical and electronic engineering, vol. 32 no. 1
Type: Research Article
ISSN: 0332-1649

Keywords

Article
Publication date: 1 June 2000

K. Wiak

Discusses the 27 papers in ISEF 1999 Proceedings on the subject of electromagnetisms. States the groups of papers cover such subjects within the discipline as: induction machines;…

Abstract

Discusses the 27 papers in ISEF 1999 Proceedings on the subject of electromagnetisms. States the groups of papers cover such subjects within the discipline as: induction machines; reluctance motors; PM motors; transformers and reactors; and special problems and applications. Debates all of these in great detail and itemizes each with greater in‐depth discussion of the various technical applications and areas. Concludes that the recommendations made should be adhered to.

Details

COMPEL - The international journal for computation and mathematics in electrical and electronic engineering, vol. 19 no. 2
Type: Research Article
ISSN: 0332-1649

Keywords

Article
Publication date: 1 January 2013

Luigi Alberti, Elisabetta Tedeschi, Nicola Bianchi, Maider Santos and Alessandro Fasolo

The purpose of this paper is to investigate the impact of control strategy selection on the power performance of wave energy converters for different ratings of the Power Take‐Off…

Abstract

Purpose

The purpose of this paper is to investigate the impact of control strategy selection on the power performance of wave energy converters for different ratings of the Power Take‐Off (PTO) system.

Design/methodology/approach

The case of a point absorber equipped with an all‐electric PTO is considered. The effect of control techniques and electrical generator design is analyzed from a theoretical standpoint and then verified through integrated hydrodynamic‐electric simulations.

Findings

It has been proved that control parameters that maximize the power extraction from the waves can be derived based on the power and torque constraints imposed by the electrical machine.

Originality/value

An optimized and integrated approach to the control strategy selection and generator design for point absorbers has been presented, which maximizes the electric power generation from sea waves under real conditions and represents a good trade‐off for the PTO from both the technical and the economic standpoint.

Details

COMPEL - The international journal for computation and mathematics in electrical and electronic engineering, vol. 32 no. 1
Type: Research Article
ISSN: 0332-1649

Keywords

Article
Publication date: 5 January 2022

Basharat Ullah, Faisal Khan, Bakhtiar Khan and Muhammad Yousuf

The purpose of this paper is to analyze electromagnetic performance and develop an analytical approach to find the suitable coil combination and no-load flux linkage of the…

Abstract

Purpose

The purpose of this paper is to analyze electromagnetic performance and develop an analytical approach to find the suitable coil combination and no-load flux linkage of the proposed hybrid excited consequent pole flux switching machine (HECPFSM) while minimizing the drive storage and computational time which is the main problem in finite element analysis (FEA) tools.

Design/methodology/approach

First, a new HECPFSM based on conventional consequent pole flux switching permanent machine (FSPM) is proposed, and lumped parameter magnetic network model (LPMNM) is developed for the initial analysis like coil combination and no-load flux linkage. In LPMNM, all the parts of one-third machine are modeled which helps in reduction of drive storage, computational complexity and computational time without affecting the accuracy. Second, self and mutual inductance are calculated in the stator, and dq-axis inductance is calculated using park transformation in the rotor of the proposed machine. Furthermore, on-load performance analysis, like average torque, torque density and efficiency, is done by FEA.

Findings

The developed LPMNM is validated by FEA via JMAG v. 19.1. The results obtained show good agreement with an accuracy of 96.89%.

Practical implications

The proposed HECPFSM is developed for high-speed brushless AC applications like electric vehicle (EV)/hybrid electric vehicle (HEV).

Originality/value

The proposed HECPFSM offers better flux regulation capability with enhanced electromagnetic performance as compared to conventional consequent pole FSPM. Moreover, the developed LPMNM reduces drive storage and computational time by modeling one-third of the machine.

Details

COMPEL - The international journal for computation and mathematics in electrical and electronic engineering , vol. 41 no. 5
Type: Research Article
ISSN: 0332-1649

Keywords

Article
Publication date: 2 May 2017

Jan Karthaus, Simon Steentjes, Nora Leuning and Kay Hameyer

The purpose of this paper is to study the variation of the specific iron loss components of electrical steel sheets when applying a tensile mechanical load below the yield…

Abstract

Purpose

The purpose of this paper is to study the variation of the specific iron loss components of electrical steel sheets when applying a tensile mechanical load below the yield strength of the material. The results provide an insight into the iron loss behaviour of the laminated core of electrical machines which are exposed to mechanical stresses of diverse origins.

Design/methodology/approach

The specific iron losses of electrical steel sheets are measured using a standardised single-sheet tester equipped with a hydraulic pressure cylinder which enables application of a force to the specimen under test. Based on the measured data and a semi-physical description of specific iron losses, the stress-dependency of the iron loss components can be studied.

Findings

The results show a dependency of iron loss components on the applied mechanical stress. Especially for the non-linear loss component and high frequencies, a large variation is observed, while the excess loss component is not as sensitive to high mechanical stresses. Besides, it is shown that the stress-dependent iron loss prediction approximates the measured specific iron losses in an adequate way.

Originality/value

New applications such as high-speed traction drives in electric vehicles require a suitable design of the electrical machine. These applications require particular attention to the interaction between mechanical influences and magnetic behaviour of the machine. In this regard, knowledge about the relation between mechanical stress and magnetic properties of soft magnetic material is essential for an exact estimation of the machine’s behaviour.

Details

COMPEL - The international journal for computation and mathematics in electrical and electronic engineering, vol. 36 no. 3
Type: Research Article
ISSN: 0332-1649

Keywords

Article
Publication date: 5 May 2015

Andreas Ruf, Simon Steentjes, David Franck and Kay Hameyer

The purpose of this paper is to focus on the frequency-dependent non-linear magnetization behaviour of the soft magnetic material, which influences both the energy loss and the…

Abstract

Purpose

The purpose of this paper is to focus on the frequency-dependent non-linear magnetization behaviour of the soft magnetic material, which influences both the energy loss and the performance of the electrical machine. The applied approach is based on measured material characteristics for various frequencies and magnetic flux densities. These are varied during the simulation according to the operational conditions of the rotating electrical machine. Therewith, the fault being committed neglecting the frequency-dependent magnetization behaviour of the magnetic material is examined in detail.

Design/methodology/approach

The influence of non-linear frequency-dependent material properties is studied by variation of the frequency-dependent magnetization characteristics. Two different non-oriented electrical steel grades having the same nominal losses at 1.5 T and 50 Hz, but different thickness, classified as M330-35A and M330-50A are studied in detail. Both have slightly different magnetization and loss behaviour.

Findings

This analysis corroborates that it is important to consider the frequency-dependency and saturation behaviour of the ferromagnetic material as well as its magnetic utilization when simulating electrical machines, i.e., its performance. The necessity to change the magnetization curve according to the applied frequency for the calculation of operating points depends on the applied material and the frequency range. Using materials, whose magnetization behaviour is marginally affected by frequency, causes a deviation in the flux-linkage and the electromagnetic torque in a small frequency range. However, analysing larger frequency ranges, the frequency behaviour of the material cannot be neglected. For instance, a poorer magnetizability requires a higher quadrature current to keep the same torque leading to increased copper losses. In addition, the applied iron-loss model plays a central role, since changes in magnetization behaviour with frequency lead to changes in the iron losses. In order to study the impact, the iron-loss model has to be capable to incorporate the harmonic content, because particularly the field harmonics are influenced by the shape of the magnetization curve.

Originality/value

This paper gives a close insight on the way the frequency-dependent non-linear magnetization behaviour affects the energy loss and the performance of electrical machines. Therewith measures to tackle this could be derived.

Details

COMPEL: The International Journal for Computation and Mathematics in Electrical and Electronic Engineering, vol. 34 no. 3
Type: Research Article
ISSN: 0332-1649

Keywords

Article
Publication date: 9 September 2013

Anouar Belahcen, Katarzyna Fonteyn, Reijo Kouhia, Paavo Rasilo and Antero Arkkio

– The purpose is to implement and compare different approaches for modelling the magnetostriction phenomenon in iron sheet used in rotating electrical machines.

Abstract

Purpose

The purpose is to implement and compare different approaches for modelling the magnetostriction phenomenon in iron sheet used in rotating electrical machines.

Design/methodology/approach

In the force-based approach, the magnetostriction is modelled as a set of equivalent forces, which produce the same deformation of the material as the magnetostriction strains. These forces among other magnetic forces are computed from the solution of the finite element (FE) field computation and used as loads for the displacement-based mechanical FE analysis. In the strain-based approach, the equivalent magnetostrictive forces are not needed and an energy-based model is used to define magnetomechanically coupled constitutive equations of the material. These equations are then space-discretised and solved with the FE method for the magnetic field and the displacements.

Findings

It is found that the equivalent forces method can reproduce the displacements and strains of the structure but it results in erroneous stress states. The energy-based method has the ability to reproduce both the stress and strains correctly; thus enabling the analysis of stress-dependent quantities such as the iron losses and the magnetostriction itself.

Research limitations/implications

The investigated methods do not account for hysteresis and other dynamic effects. They also require long computation times. With the available computing resources, the computation time does not present any problem as far as they are not used in everyday design procedures but the modelling of dynamic effect needs to be elaborated.

Originality/value

The developed and implemented methods are verified with measurements and simulation experiments and applied to as complex structure as an electrical machine. The problems related to the different approaches are investigated and explained through simulations.

Details

COMPEL: The International Journal for Computation and Mathematics in Electrical and Electronic Engineering, vol. 32 no. 5
Type: Research Article
ISSN: 0332-1649

Keywords

Article
Publication date: 7 July 2020

Wasiq Ullah, Faisal Khan and Muhammad Umair

The purpose of this paper is to investigate an alternative simplified analytical approach for the design of electric machines. Numerical-based finite element method (FEM) is a…

Abstract

Purpose

The purpose of this paper is to investigate an alternative simplified analytical approach for the design of electric machines. Numerical-based finite element method (FEM) is a powerful tool for accurate modelling and electromagnetic performance analysis of electric machines. However, computational complexity, magnetic saturation, complex stator structure and time consumption compel researchers to adopt alternate analytical model for initial design of electric machine especially flux switching machines (FSMs).

Design/methodology/approach

In this paper, simplified lumped parameter magnetic equivalent circuit (LPMEC) model is presented for newly developed segmented PM consequent pole flux switching machine (SPMCPFSM). LPMEC model accounts influence of all machine parts for quarter of machine which helps to reduce computational complexity, computational time and drive storage without affecting overall accuracy. Furthermore, inductance calculation is performed in the rotor and stator frame of reference for accurate estimation of the self-inductance, mutual inductance and dq-axis inductance profile using park transformation.

Findings

The developed LPMEC model is validated with corresponding FEA using JMAG Commercial FEA Package v. 18.1 which shows good agreement with accuracy of ∼98.23%, and park transformation precisely estimates the inductance profile in rotor and stator frame of reference.

Practical implications

The model is developed for high-speed brushless AC applications.

Originality/value

The proposed SPMCPFSM enhance electromagnetic performance owing to partitioned PMs configuration which make it different than conventional designs. Moreover, the developed LPMEC model reduces computational time by solving quarter of machine.

Article
Publication date: 12 August 2021

Wasiq Ullah, Faisal Khan, Muhammad Umair and Bakhtiar Khan

This paper aims to reviewed analytical methodologies, i.e. lumped parameter magnetic equivalent circuit (LPMEC), magnetic co-energy (MCE), Laplace equations (LE), Maxwell stress…

Abstract

Purpose

This paper aims to reviewed analytical methodologies, i.e. lumped parameter magnetic equivalent circuit (LPMEC), magnetic co-energy (MCE), Laplace equations (LE), Maxwell stress tensor (MST) method and sub-domain modelling for design of segmented PM(SPM) consequent pole flux switching machine (SPMCPFSM). Electric machines, especially flux switching machines (FSMs), are accurately modeled using numerical-based finite element analysis (FEA) tools; however, despite of expensive hardware setup, repeated iterative process, complex stator design and permanent magnet (PM) non-linear behavior increases computational time and complexity.

Design/methodology/approach

This paper reviews various alternate analytical methodologies for electromagnetic performance calculation. In above-mentioned analytical methodologies, no-load phase flux linkage is performed using LPMEC, magnetic co-energy for cogging torque, LE for magnetic flux density (MFD) components, i.e. radial and tangential and MST for instantaneous torque. Sub-domain model solves electromagnetic performance, i.e. MFD and torque behaviour.

Findings

The reviewed analytical methodologies are validated with globally accepted FEA using JMAG Commercial FEA Package v. 18.1 which shows good agreement with accuracy. In comparison of analytical methodologies, analysis reveals that sub-domain model not only get rid of multiples techniques for validation purpose but also provide better results by accounting influence of all machine parts which helps to reduce computational complexity, computational time and drive storage with overall accuracy of ∼99%. Furthermore, authors are confident to recommend sub-domain model for initial design stage of SPMCPFSM when higher accuracy and low computational cost are primal requirements.

Practical implications

The model is developed for high-speed brushless AC applications.

Originality/value

The SPMCPFSM enhances electromagnetic performance owing to segmented PMs configuration which makes it different than conventional designs. Moreover, developed analytical methodologies for SPMCPFSM reduce computational time compared with that of FEA.

Details

COMPEL - The international journal for computation and mathematics in electrical and electronic engineering , vol. 40 no. 3
Type: Research Article
ISSN: 0332-1649

Keywords

1 – 10 of over 24000