Search results

1 – 10 of over 1000
Article
Publication date: 8 April 2014

De-Xing Peng

This paper aims to compare the wear performance of carbon steel specimens clad with TiC, WC and TiN powders by the gas tungsten arc welding (GTAW) method under optimum processing…

Abstract

Purpose

This paper aims to compare the wear performance of carbon steel specimens clad with TiC, WC and TiN powders by the gas tungsten arc welding (GTAW) method under optimum processing conditions.

Design/methodology/approach

Various ceramic powders (TiC, WC and TiN) with equal percentages by weight were prepared for use as cladding materials to compare their effects on wear resistance. The wear behaviors of different cladding specimens were evaluated with a rotating-type tribometer under dry sliding conditions. The cladding microstructures were characterized by optical microscopy, scanning electron microscopy and X-ray energy dispersive spectrometry.

Findings

The experimental results confirmed that the hardness was also much higher in the carbon steel with cladding than in carbon steel without cladding. The pin-on-disc wear test showed that the wear-resistance of ceramics clad with TiC is better than that in ceramics clad with WC or TiN. The wear scar area of the specimen with TiC cladding was only one-tenth that of carbon steel without cladding.

Originality/value

The experiments confirm that the cladding surfaces of ceramic particles reduce wear rate and friction.

Details

Industrial Lubrication and Tribology, vol. 66 no. 3
Type: Research Article
ISSN: 0036-8792

Keywords

Article
Publication date: 8 June 2015

N Mahendra Prabhu, K.A. Gopal, S. Murugan, T.K. Haneef, C. K. Mukhopadhyay, S. Venugopal and T. Jayakumar

– The purpose of this paper is to determine the feasibility of identifying the creep rupture of reactor cladding tubes using acoustic emission technique (AET).

Abstract

Purpose

The purpose of this paper is to determine the feasibility of identifying the creep rupture of reactor cladding tubes using acoustic emission technique (AET).

Design/methodology/approach

The creep rupture tests were carried out by pressuring stainless steel capsules upto 6 MPa at room temperature and then heating continuously in a furnace upto rupture. The acoustic emission (AE) signals generated during the creep rupture tests were recorded using a 150 kHz resonant sensor and analysed using AE Win software.

Findings

When rupture occurs in the pressurized capsule tube representing the cladding tube, AE sensor attached to a waveguide captures the mechanical disturbance from the capsule and these data can be advantageously used to identify the creep rupture event of the cladding tube.

Practical implications

The creep rupture data of fuel clad tube is very important in design and for smooth operation of nuclear reactors without fuel pin failure in reactors.

Originality/value

AE is an advanced non-destructive evaluation technique. This technique has been successfully applied for on-line monitoring of creep rupture of the reactor cladding tube which otherwise could be detected by thermocouple readings only.

Details

International Journal of Structural Integrity, vol. 6 no. 3
Type: Research Article
ISSN: 1757-9864

Keywords

Article
Publication date: 4 March 2014

De-Xing Peng and Yuan Kang

Thick composite claddings of carbides on a metal matrix are ideal for use in components that are subject to severe abrasive wear. It is a metal matrix composite (MMC) that is…

Abstract

Purpose

Thick composite claddings of carbides on a metal matrix are ideal for use in components that are subject to severe abrasive wear. It is a metal matrix composite (MMC) that is reinforced by an appropriate ceramic phase and nano-diamond cladding to reduce friction and to protect the opposing surface. The paper aims to discuss these issues.

Design/methodology/approach

This work evaluated the wear performance of carbon steel cladded with TiC/nano-diamond powders by gas tungsten arc welding (GTAW) method. The microstructures, chemical compositions, and wear characteristics of cladded surfaces were analyzed by scanning electron microscopy (SEM), and energy dispersive X-ray spectroscopy (EDX).

Findings

The cladding was uniform, continuous, and almost defect-free, and particles were evenly distributed throughout the cladding layer. The results of wear test indicate that the friction coefficient of the TiC+1.5% nano-diamond cladding is lower than that of AISI 1020 carbon steel. Thus, the wear scar area of the TiC+1.5% nano-diamond cladding is only one-tenth of the AISI 1020 carbon steel.

Originality/value

The experiments in this study confirm that, by reducing friction and anti-wear, the cladding layer prepared using the proposed methods can prolong machinery operating life.

Details

Industrial Lubrication and Tribology, vol. 66 no. 2
Type: Research Article
ISSN: 0036-8792

Keywords

Article
Publication date: 5 August 2014

De-Xing Peng, Yuan Kang and Yu-Jun Huang

The purpose of this paper is to evaluate the wear performance of carbon steel cladded with TiC powders by gas tungsten arc welding method. Because of poor wear resistance, carbon…

Abstract

Purpose

The purpose of this paper is to evaluate the wear performance of carbon steel cladded with TiC powders by gas tungsten arc welding method. Because of poor wear resistance, carbon steels have limited industrial applications as tribological components.

Design/methodology/approach

The cladding microstructures were characterized by optical microscope, scanning electron microscope (SEM) and X-ray energy dispersive spectrometer. The wear behavior of the clad layer was studied with a block-on-ring tribometer.

Findings

The experimental results revealed that the metallurgical interface provided an excellent bond between the cladding and the carbon steel substrate. The cladding revealed no porosity or cracking, and particles were evenly distributed throughout the cladding layer. Hardness was increased from HRc 6.6 in the substrate to HRc 62 in the cladded layer due to the presence of the hard TiC phase.

Originality/value

The experiments confirm that the cladding surfaces of TiC particles reduce wear rate and friction. Increasing TiC contents also improves hardness and wear resistance at room temperature and under dry sliding wear conditions.

Details

Industrial Lubrication and Tribology, vol. 66 no. 5
Type: Research Article
ISSN: 0036-8792

Keywords

Article
Publication date: 10 August 2012

De‐Xing Peng

The purpose of this paper is to test whether TiC clad layer deposited on carbon steel by gas tungsten arc welding (GTAW) improves carbon steel substrate wear resistance.

Abstract

Purpose

The purpose of this paper is to test whether TiC clad layer deposited on carbon steel by gas tungsten arc welding (GTAW) improves carbon steel substrate wear resistance.

Design/methodology/approach

Cladding microstructure and cladded surface hardness were tested in samples prepared under varying welding parameters. The chemical composition, microstructure and surface morphology of the cladded layer were analyzed by optical microscope, scanning electron microscopy and energy dispersive X‐ray spectroscopy. The wear behavior of the cladded layer was studied with a block‐on‐ring tribometer. Wear mechanisms in the specimens are discussed based on microscopic study of wear surface characteristics.

Findings

The experimental results revealed an excellent metallurgical bond between the composite coating and substrate. Hardness was increased from HRb 6.6 in the substrate to HRb 65 in the modified layer due to the presence of the hard TiC phase. Experimental comparison of varying welding parameters revealed that welding speed and current had the largest effect on the hardness and wear resistance of the cladded layer.

Originality/value

The paper shows that by using cladding techniques to improve surface properties such as resistances to wear, corrosion, and oxidation, service life can be increased, and machinery costs can be reduced.

Details

Industrial Lubrication and Tribology, vol. 64 no. 5
Type: Research Article
ISSN: 0036-8792

Keywords

Article
Publication date: 1 March 2013

De‐Xing Peng, Yuan Kang, Zheng‐Xian Li and Shih‐Yen Chang

The purpose of this paper is to test the wear behavior of a carbon steel surface after cladding by gas tungsten arc welding (GTAW) method to enhance wear resistance.

Abstract

Purpose

The purpose of this paper is to test the wear behavior of a carbon steel surface after cladding by gas tungsten arc welding (GTAW) method to enhance wear resistance.

Design/methodology/approach

The microstructures, chemical compositions, and wear characteristics of cladded surfaces were analyzed by scanning electron microscopy (SEM), and energy dispersive X‐ray spectroscopy (EDX). A rotating‐type tribometer was used to evaluate the wear characteristics of cladded specimens under dry sliding conditions at room temperature. The dry sliding wear resistance of the coatings was tested as a function of applied load and sliding time, and wear mechanisms were elucidated by analyzing wear surfaces.

Findings

The experimental results revealed an excellent metallurgical bond between the composite coating and substrate. The coating was uniform, continuous, and almost defect‐free, and particles were evenly distributed throughout the cladding layer. Hardness was increased from 200 HV in the substrate to 650‐800 HV in the modified layer due to the presence of the hard TiC phase. The excellent wear resistance and very low load sensitivity observed in the dry sliding wear test of the intermetallic matrix composite coating were due to the high hardness of TiC and the strong atomic bonds of the intermetallic matrix.

Originality/value

The experiments in this study confirm that, by reducing friction and anti‐wear, the cladding layer prepared using the proposed methods can prolong machinery operating life.

Details

Industrial Lubrication and Tribology, vol. 65 no. 2
Type: Research Article
ISSN: 0036-8792

Keywords

Article
Publication date: 1 July 1988

AMP minute meter plus. JCT Controls Ltd has developed a fully electronic amp minute meter designed for electroplating, anodising and similar chemical processing operations. It…

Abstract

AMP minute meter plus. JCT Controls Ltd has developed a fully electronic amp minute meter designed for electroplating, anodising and similar chemical processing operations. It counts and displays amp minutes and amp hours at a high degree of precision and totalises the figures. It also has a number of other interesting features.

Details

Anti-Corrosion Methods and Materials, vol. 35 no. 7
Type: Research Article
ISSN: 0003-5599

Article
Publication date: 1 February 1987

Avenue's terracotta features restored. Architectural features in one of London's finest groups of terracotta‐faced buildings have been restored by RBR Contract Services in a…

Abstract

Avenue's terracotta features restored. Architectural features in one of London's finest groups of terracotta‐faced buildings have been restored by RBR Contract Services in a scheme which involved strengthening corroded structural steel with epoxy‐bonded reinforcement and injecting polyester resin into cracked faience blocks.

Details

Anti-Corrosion Methods and Materials, vol. 34 no. 2
Type: Research Article
ISSN: 0003-5599

Article
Publication date: 1 July 1961

Plastics‐bonded Ships' Plates?. It is expected by G. A. Willis Ltd. that use of their Vynasol PVC coating which bonds to steel, and for application of which a plant is under…

Abstract

Plastics‐bonded Ships' Plates?. It is expected by G. A. Willis Ltd. that use of their Vynasol PVC coating which bonds to steel, and for application of which a plant is under construction at Aycliffe by Dorman Long, will be extended to steel girders and ships' plates.

Details

Anti-Corrosion Methods and Materials, vol. 8 no. 7
Type: Research Article
ISSN: 0003-5599

Article
Publication date: 1 February 1980

William Sharpe

Introduction Clad metals are composites of two or more metals which are joined in a continuous manner by a metallurgical bond. The composite provides the specific advantages of…

Abstract

Introduction Clad metals are composites of two or more metals which are joined in a continuous manner by a metallurgical bond. The composite provides the specific advantages of both metals, usually the good corrosion resistance of the cladding metal and the strength and economy of the backing metal.

Details

Anti-Corrosion Methods and Materials, vol. 27 no. 2
Type: Research Article
ISSN: 0003-5599

1 – 10 of over 1000