Search results

1 – 4 of 4
Article
Publication date: 13 March 2017

Anthony Deloge Ariyanayagam and Mahen Mahendran

This paper aims to present the details of a study undertaken to develop an energy-based time equivalent approach to obtain the fire resistance ratings (FRRs) of light gauge steel…

Abstract

Purpose

This paper aims to present the details of a study undertaken to develop an energy-based time equivalent approach to obtain the fire resistance ratings (FRRs) of light gauge steel frame (LSF) walls exposed to realistic design fire curves.

Design/methodology/approach

The energy-based time equivalent method was developed based on the performance of a structural member exposed to a realistic design fire curve in comparison to that of the standard fire time – temperature curve. The FRR predicted by the energy-based method for LSF wall configurations exposed to both rapid and prolonged fires were compared with those from fire design rules and finite element analyses (FEA).

Findings

The proposed energy method can be used to obtain the FRR of LSF walls in case of prolonged fires and cannot be used for rapid fires as the computed FRRs were higher than the results from FEA and fire design rules due to the influence of thermal bowing and its magnification effects at a high temperature gradient across the studs for rapid fires.

Originality/value

The energy-based time equivalent method was developed based on equal fire severity principles. Three different wall configurations were considered and exposed to both rapid and prolonged fires. The FRR obtained from the energy-based method were compared with fire design rules and FEA results to assess the use of the energy-based method to predict the FRR of LSF walls.

Details

Journal of Structural Fire Engineering, vol. 8 no. 1
Type: Research Article
ISSN: 2040-2317

Keywords

Article
Publication date: 14 July 2017

Mohamed Rusthi, Poologanathan Keerthan, Mahen Mahendran and Anthony Ariyanayagam

This research was aimed at investigating the fire performance of LSF wall systems by using 3-D heat transfer FE models of existing LSF wall system configurations.

Abstract

Purpose

This research was aimed at investigating the fire performance of LSF wall systems by using 3-D heat transfer FE models of existing LSF wall system configurations.

Design/methodology/approach

This research was focused on investigating the fire performance of LSF wall systems by using 3-D heat transfer finite element models of existing LSF wall system configurations. The analysis results were validated by using the available fire test results of five different LSF wall configurations.

Findings

The validated finite element models were used to conduct a parametric study on a range of non-load bearing and load bearing LSF wall configurations to predict their fire resistance levels (FRLs) for varying load ratios.

Originality/value

Fire performance of LSF wall systems with different configurations can be understood by performing full-scale fire tests. However, these full-scale fire tests are time consuming, labour intensive and expensive. On the other hand, finite element analysis (FEA) provides a simple method of investigating the fire performance of LSF wall systems to understand their thermal-mechanical behaviour. Recent numerical research studies have focused on investigating the fire performances of LSF wall systems by using finite element (FE) models. Most of these FE models were developed based on 2-D FE platform capable of performing either heat transfer or structural analysis separately. Therefore, this paper presents the details of a 3-D FEA methodology to develop the capabilities to perform fully-coupled thermal-mechanical analyses of LSF walls exposed to fire in future.

Details

Journal of Structural Fire Engineering, vol. 8 no. 4
Type: Research Article
ISSN: 2040-2317

Keywords

Article
Publication date: 5 October 2021

Indunil Erandi Ariyaratne, Anthony Ariyanayagam and Mahen Mahendran

This paper presents the details of a research study on developing composite masonry blocks using two types of mixes, conventional and lightweight mix, to enhance their…

Abstract

Purpose

This paper presents the details of a research study on developing composite masonry blocks using two types of mixes, conventional and lightweight mix, to enhance their fire/bushfire resistance and residual compressive strength.

Design/methodology/approach

Composite masonry blocks (390 × 190 × 90 mm) were fabricated using conventional cement–sand mix as the outer layer and lightweight cement–sand–diatomite mix as the inner layer. Material properties were determined, and all the mixes were proportioned by the absolute volume method. After 28 days of curing, density tests, compression tests before and after fire exposure and fire resistance tests of the developed blocks were conducted, and the results were compared with those of conventional cement–sand and cement–sand–diatomite blocks.

Findings

Developed composite blocks satisfy density and compressive strength requirements for loadbearing lightweight solid masonry units. Fire resistance of the composite block is –/120/120, and no cracks appeared on the ambient side surface of the block after 3 h of fire exposure. Residual strength of the composite block is higher compared to cement–sand and cement–sand–diatomite blocks and satisfies the loadbearing solid masonry unit strength requirements.

Practical implications

Composite block developed in this research can be suggested as a suitable loadbearing lightweight solid masonry block for several applications in buildings in bushfire prone areas.

Originality/value

Limited studies are available for composite masonry blocks in relation to their fire resistance and residual strength.

Details

Journal of Structural Fire Engineering, vol. 13 no. 1
Type: Research Article
ISSN: 2040-2317

Keywords

Article
Publication date: 18 November 2014

Anthony Ariyanayagam and Mahen Mahendran

This paper presents the details of full scale fire tests of LSF wall panels conducted using realistic fire time-temperature curves. Tests included eight LSF wall specimens of…

Abstract

This paper presents the details of full scale fire tests of LSF wall panels conducted using realistic fire time-temperature curves. Tests included eight LSF wall specimens of various configurations exposed to both parametric design and natural fire curves. Details of the fire test set-up, test procedure and the results including the measured time-temperature and deformation curves of LSF wall panels are presented along with wall stud failure modes and times. This paper also compares the structural and thermal behavioural characteristics of LSF wall studs with those based on the standard time-temperature curve. Finally, the stud failure times and temperatures are summarized for both standard and realistic design fire curves. This study provides the necessary test data to validate the numerical models of LSF wall panels and to undertake a detailed study into the structural and thermal performance of LSF wall panels exposed to realistic design fire curves.

1 – 4 of 4