Search results

1 – 2 of 2
Article
Publication date: 30 May 2024

Baharak Hooshyarfarzin, Mostafa Abbaszadeh and Mehdi Dehghan

The main aim of the current paper is to find a numerical plan for hydraulic fracturing problem with application in extracting natural gases and oil.

Abstract

Purpose

The main aim of the current paper is to find a numerical plan for hydraulic fracturing problem with application in extracting natural gases and oil.

Design/methodology/approach

First, time discretization is accomplished via Crank-Nicolson and semi-implicit techniques. At the second step, a high-order finite element method using quadratic triangular elements is proposed to derive the spatial discretization. The efficiency and time consuming of both obtained schemes will be investigated. In addition to the popular uniform mesh refinement strategy, an adaptive mesh refinement strategy will be employed to reduce computational costs.

Findings

Numerical results show a good agreement between the two schemes as well as the efficiency of the employed techniques to capture acceptable patterns of the model. In central single-crack mode, the experimental results demonstrate that maximal values of displacements in x- and y- directions are 0.1 and 0.08, respectively. They occur around both ends of the line and sides directly next to the line where pressure takes impact. Moreover, the pressure of injected fluid almost gained its initial value, i.e. 3,000 inside and close to the notch. Further, the results for non-central single-crack mode and bifurcated crack mode are depicted. In central single-crack mode and square computational area with a uniform mesh, computational times corresponding to the numerical schemes based on the high order finite element method for spatial discretization and Crank-Nicolson as well as semi-implicit techniques for temporal discretizations are 207.19s and 97.47s, respectively, with 2,048 elements, final time T = 0.2 and time step size τ = 0.01. Also, the simulations effectively illustrate a further decrease in computational time when the method is equipped with an adaptive mesh refinement strategy. The computational cost is reduced to 4.23s when the governed model is solved with the numerical scheme based on the adaptive high order finite element method and semi-implicit technique for spatial and temporal discretizations, respectively. Similarly, in other samples, the reduction of computational cost has been shown.

Originality/value

This is the first time that the high-order finite element method is employed to solve the model investigated in the current paper.

Details

Multidiscipline Modeling in Materials and Structures, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 1573-6105

Keywords

Article
Publication date: 31 May 2024

Mario Versaci, Giovanni Angiulli, Luisa Angela Fattorusso, Paolo Di Barba and Alessandra Jannelli

Based on previous results of the existence, uniqueness, and regularity conditions for a continuous dynamic model for a parallel-plate electrostatic…

Abstract

Purpose

Based on previous results of the existence, uniqueness, and regularity conditions for a continuous dynamic model for a parallel-plate electrostatic micro-electron-mechanical-systems with the fringing field, the purpose of this paper concerns a Galerkin-FEM procedure for deformable element deflection recovery. The deflection profiles are reconstructed by assigning the dielectric properties of the moving element. Furthermore, the device’s use conditions and the deformable element’s mechanical stresses are presented and discussed.

Design/methodology/approach

The Galerkin-FEM approach is based on weighted residuals, where the integrals appearing in the solution equation have been solved using the Crank–Nicolson algorithm.

Findings

Based on the connection between the fringing field and the electrostatic force, the proposed approach reconstructs the deflection of the deformable element, satisfying the conditions of existence, uniqueness and regularity. The influence of the electromechanical properties of the deformable plate on the method has also been considered and evaluated.

Research limitations/implications

The developed analytical model focused on a rectangular geometry.

Practical implications

The device studied is suitable for industrial and biomedical applications.

Originality/value

This paper proposed numerical approach characterized by low CPU time enables the creation of virtual prototypes that can be analyzed with significant cost reduction and increased productivity.

Details

COMPEL - The international journal for computation and mathematics in electrical and electronic engineering , vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 0332-1649

Keywords

1 – 2 of 2