Search results

1 – 10 of 10
Article
Publication date: 20 May 2024

Xiao Yang and Xinbo Qian

Hydraulic slide valve failure often results from competing failure modes, termed competitive failure. To enhance prediction accuracy for hydraulic slide valve remaining useful…

Abstract

Purpose

Hydraulic slide valve failure often results from competing failure modes, termed competitive failure. To enhance prediction accuracy for hydraulic slide valve remaining useful life, the authors propose a method incorporating competitive failure and Monte Carlo simulation. This method allows for more accurate prediction of hydraulic slide valve remaining useful life.

Design/methodology/approach

In this paper, the competitive failure mode of the hydraulic slide valve is analyzed by studying the two failure modes of the hydraulic slide valve, and the prediction of the remaining useful life of the hydraulic slide valve is studied by using the sample set generated by Monte Carlo simulation and the competitive failure joint model.

Findings

The results show that the proposed prediction method based on competitive failure and Monte Carlo simulation is more accurate than the traditional Bayesian joint model prediction method when dealing with the failure mode competition phenomenon of hydraulic slide valve.

Originality/value

In this paper, the remaining useful life prediction of hydraulic slide valve with competitive failure characteristics is studied, which provides a new idea for the remaining useful life prediction method.

Peer review

The peer review history for this article is available at: https://publons.com/publon/10.1108/ILT-11-2023-0361/

Details

Industrial Lubrication and Tribology, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 0036-8792

Keywords

Article
Publication date: 2 May 2024

Neveen Barakat, Liana Hajeir, Sarah Alattal, Zain Hussein and Mahmoud Awad

The objective of this paper is to develop a condition-based maintenance (CBM) scheme for pneumatic cylinders. The CBM scheme will detect two common types of air leaking failure…

Abstract

Purpose

The objective of this paper is to develop a condition-based maintenance (CBM) scheme for pneumatic cylinders. The CBM scheme will detect two common types of air leaking failure modes and identify the leaky/faulty cylinder. The successful implementation of the proposed scheme will reduce energy consumption, scrap and rework, and time to repair.

Design/methodology/approach

Effective implementation of maintenance is important to reduce operation cost, improve productivity and enhance quality performance at the same time. Condition-based monitoring is an effective maintenance scheme where maintenance is triggered based on the condition of the equipment monitored either real time or at certain intervals. Pneumatic air systems are commonly used in many industries for packaging, sorting and powering air tools among others. A common failure mode of pneumatic cylinders is air leaks which is difficult to detect for complex systems with many connections. The proposed method consists of monitoring the stroke speed profile of the piston inside the pneumatic cylinder using hall effect sensors. Statistical features are extracted from the speed profiles and used to develop a fault detection machine learning model. The proposed method is demonstrated using a real-life case of tea packaging machines.

Findings

Based on the limited data collected, the ensemble machine learning algorithm resulted in 88.4% accuracy. The algorithm can detect failures as soon as they occur based on majority vote rule of three machine learning models.

Practical implications

Early air leak detection will improve quality of packaged tea bags and provide annual savings due to time to repair and energy waste reduction. The average annual estimated savings due to the implementation of the new CBM method is $229,200 with a payback period of less than two years.

Originality/value

To the best of the authors’ knowledge, this paper is the first in terms of proposing a CBM for pneumatic systems air leaks using piston speed. Majority, if not all, current detection methods rely on expensive equipment such as infrared or ultrasonic sensors. This paper also contributes to the research gap of economic justification of using CBM.

Details

Journal of Quality in Maintenance Engineering, vol. 30 no. 2
Type: Research Article
ISSN: 1355-2511

Keywords

Article
Publication date: 23 February 2024

Guizhi Lyu, Peng Wang, Guohong Li, Feng Lu and Shenglong Dai

The purpose of this paper is to present a wall-climbing robot platform for heavy-load with negative pressure adsorption, which could be equipped with a six-degree of freedom (DOF…

Abstract

Purpose

The purpose of this paper is to present a wall-climbing robot platform for heavy-load with negative pressure adsorption, which could be equipped with a six-degree of freedom (DOF) collaborative robot (Cobot) and detection device for inspecting the overwater part of concrete bridge towers/piers for large bridges.

Design/methodology/approach

By analyzing the shortcomings of existing wall-climbing robots in detecting concrete structures, a wall-climbing mobile manipulator (WCMM), which could be compatible with various detection devices, is proposed for detecting the concrete towers/piers of the Hong Kong-Zhuhai-Macao Bridge. The factors affecting the load capacity are obtained by analyzing the antislip and antioverturning conditions of the wall-climbing robot platform on the wall surface. Design strategies for each part of the structure of the wall-climbing robot are provided based on the influencing factors. By deriving the equivalent adsorption force equation, analyzed the influencing factors of equivalent adsorption force and provided schemes that could enhance the load capacity of the wall-climbing robot.

Findings

The adsorption test verifies the maximum negative pressure that the fan module could provide to the adsorption chamber. The load capacity test verifies it is feasible to achieve the expected bearing requirements of the wall-climbing robot. The motion tests prove that the developed climbing robot vehicle could move freely on the surface of the concrete structure after being equipped with a six-DOF Cobot.

Practical implications

The development of the heavy-load wall-climbing robot enables the Cobot to be installed and equipped on the wall-climbing robot, forming the WCMM, making them compatible with carrying various devices and expanding the application of the wall-climbing robot.

Originality/value

A heavy-load wall-climbing robot using negative pressure adsorption has been developed. The wall-climbing robot platform could carry a six-DOF Cobot, making it compatible with various detection devices for the inspection of concrete structures of large bridges. The WCMM could be expanded to detect the concretes with similar structures. The research and development process of the heavy-load wall-climbing robot could inspire the design of other negative-pressure wall-climbing robots.

Details

Industrial Robot: the international journal of robotics research and application, vol. 51 no. 3
Type: Research Article
ISSN: 0143-991X

Keywords

Open Access
Article
Publication date: 28 February 2024

Hassan Th. Alassafi, Khalid S. Al-Gahtani, Abdulmohsen S. Almohsen and Abdullah M. Alsugair

Heating, ventilating, air-conditioning and cooling (HVAC) systems are crucial in daily health-care facility services. Design-related defects can lead to maintenance issues…

Abstract

Purpose

Heating, ventilating, air-conditioning and cooling (HVAC) systems are crucial in daily health-care facility services. Design-related defects can lead to maintenance issues, causing service disruptions and cost overruns. These defects can be avoided if a link between the early design stages and maintenance feedback is established. This study aims to use experts’ experience in HVAC maintenance in health-care facilities to list and evaluate the risk of each maintenance issue caused by a design defect, supported by the literature.

Design/methodology/approach

Following semistructured interviews with experts, 41 maintenance issues were identified as the most encountered issues. Subsequently, a survey was conducted in which 44 participants evaluated the probability and impact of each design-caused issue.

Findings

Chillers were identified as the HVAC components most prone to design defects and cost impact. However, air distribution ducts and air handling units are the most critical HVAC components for maintaining healthy conditions inside health-care facilities.

Research limitations/implications

The unavailability of comprehensive data on the cost impacts of all design-related defects from multiple health-care facilities limits the ability of HVAC designers to furnish case studies and quantitative approaches.

Originality/value

This study helps HVAC designers acquire prior knowledge of decisions that may have led to unnecessary and avoidable maintenance. These design-related maintenance issues may cause unfavorable health and cost consequences.

Article
Publication date: 21 May 2024

Adel Ali Ahmed Qaid, Rosmaini Ahmad, Shaliza Azreen Mustafa and Badiea Abdullah Mohammed

This study presents a systematic framework for maintenance strategy development of manufacturing process machinery. The framework is developed based on the reliability-centred…

Abstract

Purpose

This study presents a systematic framework for maintenance strategy development of manufacturing process machinery. The framework is developed based on the reliability-centred maintenance (RCM) approach to minimise the high downtime of a production line, thus increasing its reliability and availability. A case study of a production line from the ghee and soap manufacturing industry in Taiz, Yemen, is presented for framework validation purposes. The framework provides a systematic process to identify the critical system(s) and guide further investigation for functional significant items (FSIs) based on quantitative and qualitative analyses before recommending appropriate maintenance strategies and specific tasks.

Design/methodology/approach

The proposed framework integrates conventional RCM procedure with the fuzzy computational process to improve FSIs criticality estimation, which is the main part of failure mode effect criticality analysis (FMECA) applications. The framework consists of four main implementation stages: identification of the critical system(s), technical analysis, Fuzzy-FMECA application for FSIs criticality estimation and maintenance strategy selection. Each stage has its objective(s) and related scientific techniques that are applied to systematically guide the framework implementation.

Findings

The proposed framework validation is summarised as follows. The first stage results demonstrate that the seaming system (top and bottom systems) caused 50% of the total production line downtime, indicating it is a critical system that requires further analysis. The outcomes of the second stage provide significant technical information on the subject (seaming system), helping team members to identify and understand the structure and functional complexities of the seaming system. This stage also provides a better understanding of how the seaming system functions and how it can fail. In stage 3, the application of FMECA with the fuzzy computation integration process presents a systematic way to analyse the failure mode, effect and cause of items (components of the seaming system). This stage also includes items’ criticality estimation and ranking assessment. Finally, stage four guides team members in recommending the appropriate countermeasures (maintenance strategies and task selection) based on their priority level.

Originality/value

This paper proposes an original maintenance strategies development framework based on the RCM approach for production system equipment. Specifically, it considers a fuzzy computational process based on the Gaussian function in the third stage of the proposed framework. Adopting the fuzzy computational process improves the risk priority number (RPN) estimation, resulting in better criticality ranking determination. Another significant contribution is introducing an extended item criticality ranking assessment process to provide maximum levels of criticality item ranking. Finally, the proposed RCM framework also provides detailed guidance on maintenance strategy selection based on criticality levels, unique functionality and failure characteristics of each FSI.

Details

Journal of Quality in Maintenance Engineering, vol. 30 no. 2
Type: Research Article
ISSN: 1355-2511

Keywords

Article
Publication date: 30 May 2024

Taofeeq Durojaye Moshood, James O.B. Rotimi, Wajiha Shahzad and Maruf Gbadebo Salimon

Over the past two decades, the construction sector has experienced a surge in projects fueled by substantial government investment in infrastructure. However, amid this growth…

Abstract

Purpose

Over the past two decades, the construction sector has experienced a surge in projects fueled by substantial government investment in infrastructure. However, amid this growth, the industry grapples with persistent challenges. Meeting project deadlines and budgets remains a struggle, impacting the industry’s credibility. Therefore, this research intends to investigate the idea of lean construction in the construction sector and look at the obstacles facing the construction industry in implementing lean construction strategies.

Design/methodology/approach

The insights presented here result from content analysis performed on 206 articles, while the metadata analysis is based on 891 publications.

Findings

This study highlights numerous important characteristics that influence an organization’s capacity to accomplish lean construction using a systematic literature review approach.

Research limitations/implications

For forthcoming research seeking validation, utilizing a mixed-method approach could prove advantageous. Yet, it is crucial to recognize the constraints of the present study, primarily centered on the scope of the literature review.

Practical implications

This assessment will enhance comprehension of the lean construction concept, potentially encouraging the adopting of lean construction practices. Moreover, it could provide insights into effectively applying these methods in practice.

Originality/value

The literature review highlights the necessity for organizations to identify and address potential challenges they might encounter in implementing lean construction. An essential step in overcoming these obstacles involves exploring the concept of lean construction within the sector and assessing the hurdles constraining the implementation of lean construction strategies in the construction industry.

Details

Technological Sustainability, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 2754-1312

Keywords

Article
Publication date: 18 April 2024

Amanda Norazman, Zulhanafi Paiman, Syahrullail Samion, Muhammad Noor Afiq Witri Muhammad Yazid and Zuraidah Rasep

The purpose of this paper is to investigate the performance of bio-based lubricants (BBL), namely, palm mid-olein (PMO) enriched with an antioxidant agent…

26

Abstract

Purpose

The purpose of this paper is to investigate the performance of bio-based lubricants (BBL), namely, palm mid-olein (PMO) enriched with an antioxidant agent, tertiary-butylhydroquinone (TBHQ) and a viscosity improver, ethylene-vinyl acetate (EVA), in journal bearing (JB) applications.

Design/methodology/approach

Samples of the BBL were prepared by blending it with TBHQ and EVA at various blending ratios. The oxidative stability (OS) and viscosity of the BBL samples were examined using differential scanning calorimetry and a viscometer, respectively. Meanwhile, their performance in JB applications was evaluated through the use of a JB test rig with a 0.5 length-to-diameter ratio at various operating conditions.

Findings

It was found that the combination of PMO + TBHQ + EVA demonstrated a superior oil film pressure and load-carrying capacity, resulting in a reduced friction coefficient and a smaller attitude angle compared to the use of only PMO or VG68. However, it was observed that the addition of TBHQ and EVA to the PMO did not have a significant impact on the minimum oil film thickness.

Practical implications

The results would be quite useful for researchers generally and designers of bearings in particular.

Originality/value

This study used PMO as the base stock, and its compatibility with TBHQ and EVA was investigated in terms of its OS and viscosity. The performance of this treated BBL was evaluated in a hydrodynamic JB.

Peer review

The peer review history for this article is available at: https://publons.com/publon/10.1108/ILT-11-2023-0363/

Details

Industrial Lubrication and Tribology, vol. 76 no. 4
Type: Research Article
ISSN: 0036-8792

Keywords

Article
Publication date: 21 May 2024

Aoxiang Cheng and Youyi Bi

The purpose of this paper is to present an integrated data-driven framework for processing and analyzing large-scale vehicle maintenance records to get more comprehensive…

Abstract

Purpose

The purpose of this paper is to present an integrated data-driven framework for processing and analyzing large-scale vehicle maintenance records to get more comprehensive understanding on vehicle quality.

Design/methodology/approach

We propose a framework for vehicle quality analysis based on maintenance record mining and Bayesian Network. It includes the development of a comprehensive dictionary for efficient classification of maintenance items, and the establishment of a Bayesian Network model for vehicle quality evaluation. The vehicle design parameters, price and performance of functional systems are modeled as node variables in the Bayesian Network. Bayesian Network reasoning is then used to analyze the influence of these nodes on vehicle quality and their respective importance.

Findings

A case study using the maintenance records of 74 sport utility vehicle (SUV) models is presented to demonstrate the validity of the proposed framework. Our results reveal that factors such as vehicle size, chassis issues and engine displacement, can affect the chance of vehicle failures and accidents. The influence of factors such as price and performance of engine and chassis show explicit regional differences.

Originality/value

Previous research usually focuses on limited maintenance records from a single vehicle producer, while our proposed framework enables efficient and systematic processing of larger-scale maintenance records for vehicle quality analysis, which can support auto companies, consumers and regulators to make better decisions in purchase choice-making, vehicle design and market regulation.

Details

International Journal of Quality & Reliability Management, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 0265-671X

Keywords

Content available
Article
Publication date: 12 March 2024

Laharish Guntuka, Prabhjot S. Mukandwal, Emel Aktas and Vamsi Sai Krishna Paluvadi

We conduct a multidisciplinary systematic literature review on climate neutrality in the supply chain. While carbon neutrality has gained prominence, our study argues that…

Abstract

Purpose

We conduct a multidisciplinary systematic literature review on climate neutrality in the supply chain. While carbon neutrality has gained prominence, our study argues that achieving carbon neutrality alone is not enough to address climate change effectively, as non-CO2 greenhouse gases (GHG) are potent contributors to global warming.

Design/methodology/approach

We used multiple databases, including EBSCO, ProQuest, Science Direct, Emerald and Google Scholar, to identify articles related to climate neutrality in the context of non-CO2 gases. A total of 71 articles in environmental science, climate change, energy systems, agriculture and logistics are reviewed to provide insights into the climate neutrality of supply chains.

Findings

We find that, in addition to CO2, other GHG such as methane, nitrous oxide, ozone and fluorinated gases also significantly contribute to climate change. Our literature review identified several key pillars for achieving net-zero GHG emissions, including end-use efficiency and electrification, clean electricity supply, clean fuel supply, “GHG capture, storage and utilization,” enhanced land sinks, reduced non-CO2 emissions and improved feed and manure management.

Originality/value

We contribute to the literature on climate neutrality of supply chains by emphasizing the significance of non-CO2 GHG along with CO2 and highlighting the need for a comprehensive approach to climate neutrality in addressing climate change. This study advances the understanding of climate neutrality of supply chains and contributes to the discourse on effective climate change mitigation strategies. It provides clear future research directions.

Details

The International Journal of Logistics Management, vol. 35 no. 3
Type: Research Article
ISSN: 0957-4093

Keywords

Article
Publication date: 8 December 2023

Nahathai Boontae and Mongkol Ussavadilokrit

Effective facility management (FM) can reduce environmental effects on buildings throughout their life cycle. This study aims to investigate the challenges in implementing…

Abstract

Purpose

Effective facility management (FM) can reduce environmental effects on buildings throughout their life cycle. This study aims to investigate the challenges in implementing building information modelling (BIM) for FM in government buildings in Thailand.

Design/methodology/approach

Eight government-building facility experts were interviewed using an in-depth interview method to identify FM challenges. The collected qualitative data were analysed via thematic analysis to ensure data saturation. The final questionnaire was designed with 45 FM problems, classified into management, technical and human resource problems, to collect quantitative data from 54 government FM officers. The data were used to prioritise the severity and frequency of the FM problems using the severity index (SI) and relative importance index (RII).

Findings

Management problems have the highest impact, with an average SI of 0.285, followed by human resource (average SI = 0.266) and technical (average SI = 0.264) problems.

Originality/value

This study identifies the government-building FM problems in Thailand that are critical to the development of a BIM execution plan (BEP) guideline. The findings can facilitate strategy development for government-building operations and management in line with the public procurement and supply administration of Thailand. These findings can serve as a guideline to inform the development of a BIM Roadmap for integration into the national digital roadmap and the Thailand 4.0 policy to mitigate construction-related environmental and climate issues.

Details

Property Management, vol. 42 no. 3
Type: Research Article
ISSN: 0263-7472

Keywords

1 – 10 of 10