Search results

1 – 10 of 150
Article
Publication date: 17 May 2024

Aun Haider

This paper aims to comprehensively explore techniques for reducing solution time in finite element analysis (FEA), addressing the critical need for expediting computations to…

Abstract

Purpose

This paper aims to comprehensively explore techniques for reducing solution time in finite element analysis (FEA), addressing the critical need for expediting computations to facilitate agile design exploration within project timelines.

Design/methodology/approach

Drawing from a wide array of literature sources, this paper synthesizes and analyzes various methodologies used to enhance the efficiency of FEA. Techniques are scrutinized in terms of their applicability, effectiveness and potential limitations.

Findings

The review signifies application of linear assumptions across multiple facets of analysis and delves into matrix order reduction strategies, geometry simplification, symmetry exploitation, submodeling and mesh attribute control. It reveals how these techniques can effectively reduce computational burdens while maintaining acceptable levels of accuracy.

Research limitations/implications

While this review provides a comprehensive overview of existing efficiency enhancement techniques in FEA, it acknowledges inherent limitations of any synthesis-based study. Future research should focus on refining these methodologies.

Practical implications

The insights provided in this paper offer practical guidance for structural engineers and researchers seeking to optimize FEA workflows. By implementing these techniques, practitioners can expedite solution times and enhance their ability to explore design alternatives efficiently ultimately leading to cost savings and more robust structures.

Originality/value

This review contributes to the existing literature by offering a comprehensive synthesis of efficiency enhancement techniques in FEA. By highlighting the originality and value of each discussed methodology, this paper provides a roadmap for future research and practical implementation in the field of structural engineering.

Details

Aircraft Engineering and Aerospace Technology, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 1748-8842

Keywords

Article
Publication date: 27 November 2023

Davood Javanmardi and Mohammad Ali Rezvani

Bearings are critical components used to support loads and facilitate motion for rotating and sliding parts of the machinery. Bearing malfunctions can cause catastrophic failures…

Abstract

Purpose

Bearings are critical components used to support loads and facilitate motion for rotating and sliding parts of the machinery. Bearing malfunctions can cause catastrophic failures. Hence, failure analysis and endeavors to improve bearing performance are essential discussions for worldwide designers, manufacturers and end users of vital machinery. This study aims to investigate a type of roller bearing from the railway industry with premature failures. The task arises because locomotives’ maintenance and service life quality are vital to railway operations while providing transportation services for the nation. To assist in maintaining the designated locomotives, the present study scrutinizes the causes of failure of heavy-duty roller bearings from locomotive bogie axleboxes.

Design/methodology/approach

It is intended to inspect this bearing service life and statistically scrutinize its design parameters to reveal the failures’ shortcomings and origins. The significant measures include examinations of their failures’ primary and vital factors by comparing them with a real-life service history of 16 roller bearings of the same type. The bearings come from the axleboxes of a locomotive bogie with an axle load of 20 tons. The bearing loads are estimated using the EN13104 standard document and confirmed by the finite element method using ABAQUS engineering software. To validate the finite element modeling results, the bearings’ stress analysis is performed using the Hertzian contact theory that demonstrated perfect conformity. The said methods are also used to search for the areas susceptible to failures in these bearings. With the inclusion and exploitation of the bearing maintenance conditions and the logbook recordings of the locomotives for the past seven years, the critical cause for this type of bearing’s failures is surveyed and discussed.

Findings

With the inclusion and exploitation of the bearing maintenance conditions and the logbook recordings of the locomotives for the past seven years, the critical cause for this type of bearing’s failures is surveyed and discussed. As a crucial result, it is found that deprived maintenance and inadequate lubrication are the root causes of the loss of the selected bearings.

Originality/value

For the designated locomotives, the origins of the heavy-duty roller bearing failures and its design shortcomings are revealed by examining and comparing them with a real-life service history of many of the same types of bearings. The novelty of the research is in using the combination of the methods mentioned above and its decent outcome.

Details

World Journal of Engineering, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 1708-5284

Keywords

Article
Publication date: 12 December 2023

T.M. Jeyashree and P.R. Kannan Rajkumar

This study focused on identifying critical factors governing the fire response of prestressed hollow-core slabs. The hollow-core slabs used as flooring units can be subjected to…

Abstract

Purpose

This study focused on identifying critical factors governing the fire response of prestressed hollow-core slabs. The hollow-core slabs used as flooring units can be subjected to elevated temperatures during a fire. The fire response of prestressed hollow-core slabs is required to develop slabs with greater fire endurance. The present study aims to determine the extent to which the hollow-core slab can sustain load during a fire without undergoing progressive collapse under extreme fire and heating scenarios.

Design/methodology/approach

A finite element model was generated to predict the fire response of prestressed hollow core slabs under elevated temperatures. The accuracy of the model was predicted by examining thermal and structural responses through coupled temperature displacement analysis. A sensitivity analysis was performed to study the effects of concrete properties on prediction of system response. A parametric study was conducted by varying the thickness of the slab, fire and heating scenarios.

Findings

Thermal conductivity and specific heat of concrete were determined as sensitive parameters. The thickness of the slab was identified as a critical factor at a higher load level. Asymmetric heating of the slab resulted in higher fire resistance compared with symmetric heating.

Originality/value

This is the first study focused on studying the effect of modeling uncertainties on the system response by sensitivity analysis under elevated temperatures. The developed model with a parametric study helps in identifying critical factors for design purposes.

Details

Journal of Structural Fire Engineering, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 2040-2317

Keywords

Article
Publication date: 12 April 2024

Yanwei Dai, Libo Zhao, Fei Qin and Si Chen

This study aims to characterize the mechanical properties of sintered nano-silver under various sintering processes by nano-indentation tests.

Abstract

Purpose

This study aims to characterize the mechanical properties of sintered nano-silver under various sintering processes by nano-indentation tests.

Design/methodology/approach

Through microstructure observations and characterization, the influences of sintering process on the microstructure evolutions of sintered nano-silver were presented. And, the indentation load, indentation displacement curves of sintered silver under various sintering processes were measured by using nano-indentation test. Based on the nano-indentation test, a reverse analysis of the finite element calculation was used to determine the yielding stress and hardening exponent.

Findings

The porosity decreases with the increase of the sintering temperature, while the average particle size of sintered nano-silver increases with the increase of sintering temperature and sintering time. In addition, the porosity reduced from 34.88%, 30.52%, to 25.04% if the ramp rate was decreased from 25°C/min, 15°C/min, to 5°C/min, respectively. The particle size appears more frequently within 1 µm and 2 µm under the lower ramp rate. With reverse analysis, the strain hardening exponent gradually heightened with the increase of temperature, while the yielding stress value decreased significantly with the increase of temperature. When the sintering time increased, the strain hardening exponent increased slightly.

Practical implications

The mechanical properties of sintered nano-silver under different sintering processes are clearly understood.

Originality/value

This paper could provide a novel perspective on understanding the sintering process effects on the mechanical properties of sintered nano-silver.

Details

Soldering & Surface Mount Technology, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 0954-0911

Keywords

Article
Publication date: 13 May 2024

Qiang Yang, Tianfei Xia, Lijia Zhang, Ziye Zhou, Dequan Guo, Ao Gu, Xucai Zeng and Ping Wang

The purpose of this paper is to use the corresponding magnetic sensor and detection method to detect and image the defects of small diameter pipelines. Urban gas pipeline is an…

Abstract

Purpose

The purpose of this paper is to use the corresponding magnetic sensor and detection method to detect and image the defects of small diameter pipelines. Urban gas pipeline is an energy transportation tool for urban industrial production and social life, which is closely related to urban safety. Preventing the occurrence of urban gas pipeline transportation accidents and carrying out pipeline defect detection are of great significance for the urban economic and social stability. To perform pipeline defect detection, the magnetic flux leakage internal detection method is generally used in the detection of large-diameter long-distance oil and gas pipelines. However, in terms of the internal detection of small-diameter pipelines, due to the heavy weight, large structure of the detection device and small pipe diameter, the detection is more difficult.

Design/methodology/approach

In order to solve the above matters, self-made three-dimensional magnetic sensor and three-dimensional magnetic flux leakage imaging direct method are proposed for studying the defect identification. Firstly, for adapting to the diameter range of small-diameter pipelines, and containing the complete information of the defect, a self-made three-dimensional magnetic sensor is made in this paper to improve the accuracy of magnetic flux leakage detection. And on the basis of it, a small diameter pipeline defect detection system is built. Secondly, as detection signal may be affected by background magnetic field interference and the jitter interference, the complete ensemble empirical mode decomposition with adaptive noise method is utilized to screen the detected signal. As a result, the useful signal is reconstructed and the interference signal is removed. Finally, the defect contour inversion imaging of detection is realized based on the direct method of three-dimensional magnetic flux leakage imaging, which includes three-dimensional magnetic flux leakage detection data and data segmentation recognition.

Findings

The three-dimensional magnetic flux leakage imaging experimental results shown that, compared to the actual defects, the typical defects, irregular defects and crack groove defects can be analyzed by the magnetic flux leakage defect contour imaging method in qualitative and quantitative way respectively, which provides a new idea for the research of defect recognition.

Originality/value

A three-dimensional magnetic sensor is made to adapt the diameter range of small diameter pipeline, and based on it, a small-diameter pipeline defect detection system is built to collect and display the magnetic flux leakage signal.

Details

Sensor Review, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 0260-2288

Keywords

Article
Publication date: 30 April 2024

Fatimah De’nan, Chong Shek Wai, Tong Teong Yen, Zafira Nur Ezzati Mustafa and Nor Salwani Hashim

Brief introduction on the importance and the need for plastic analysis methods were presented in the beginning section of this review. The plastic method for analysis was…

Abstract

Purpose

Brief introduction on the importance and the need for plastic analysis methods were presented in the beginning section of this review. The plastic method for analysis was considered to be the more advanced method of analysis because of its ability to represent the true behaviour of the steel structures. Then in the following section, a literature analysis has been carried out on the previous investigations done on steel plates, steel beams and steel frames by other authors. The behaviour of them under different types of loading were presented and are under the investigation of innovative new analysis methods.

Design/methodology/approach

Structure member connections also have the potential for plastic failure. In this study, the authors have highlighted a few topics to be discussed. The three topics in this study are T-end plate connections to a square hollow section, semi-rigid connections and cold-formed steel storage racks with spine bracings using speed-lock connections. Connection is one of the important parts of a structure that ensures the integrity of the structure. Finally, in this technical paper, the authors introduce some topics related to seismic action. Application of the Theory of Plastic Mechanism Control in seismic design is studied in the beginning. At the end, its in-depth application for moment resisting frames-eccentrically braced frames dual systems is investigated.

Findings

When this study involves the design of a plastic structure, the design criteria must involve the ultimate load rather than the yield stress. As the steel behaves in the plastic range, it means the capacity of the steel has reached the ultimate load. Ultimate load design and load factor design are the methods in the range of plastic analysis. After the steel capacity has reached beyond the yield stress, it fulfills the requirement in this method. The plastic analysis method offers a consistent and logical approach to structural analysis. It provides an economical solution in terms of steel weight, as the sections designed using this method are smaller compared with elastic design methods.

Originality/value

The plastic method is the primary approach used in the analysis and design of statically indeterminate frame structures.

Details

World Journal of Engineering, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 1708-5284

Keywords

Article
Publication date: 19 April 2024

Mahesh Gaikwad, Suvir Singh, N. Gopalakrishnan, Pradeep Bhargava and Ajay Chourasia

This study investigates the impact of the fire decay phase on structural damage using the sectional analysis method. The primary objective of this work is to forecast the…

Abstract

Purpose

This study investigates the impact of the fire decay phase on structural damage using the sectional analysis method. The primary objective of this work is to forecast the non-dimensional capacity parameters for the axial and flexural load-carrying capacity of reinforced concrete (RC) sections for heating and the subsequent post-heating phase (decay phase) of the fire.

Design/methodology/approach

The sectional analysis method is used to determine the moment and axial capacities. The findings of sectional analysis and heat transfer for the heating stage are initially validated, and the analysis subsequently proceeds to determine the load capacity during the fire’s heating and decay phases by appropriately incorporating non-dimensional sectional and material parameters. The numerical analysis includes four fire curves with different cooling rates and steel percentages.

Findings

The study’s findings indicate that the rate at which the cooling process occurs after undergoing heating substantially impacts the axial and flexural capacity. The maximum degradation in axial and flexural capacity occurred in the range of 15–20% for cooling rates of 3 °C/min and 5 °C/min as compared to the capacity obtained at 120 min of heating for all steel percentages. As the fire cooling rate reduced to 1 °C/min, the highest deterioration in axial and flexural capacity reached 48–50% and 42–46%, respectively, in the post-heating stage.

Research limitations/implications

The established non-dimensional parameters for axial and flexural capacity are limited to the analysed section in the study owing to the thermal profile, however, this can be modified depending on the section geometry and fire scenario.

Practical implications

The study primarily focusses on the degradation of axial and flexural capacity at various time intervals during the entire fire exposure, including heating and cooling. The findings obtained showed that following the completion of the fire’s heating phase, the structural capacity continued to decrease over the subsequent post-heating period. It is recommended that structural members' fire resistance designs encompass both the heating and cooling phases of a fire. Since the capacity degradation varies with fire duration, the conventional method is inadequate to design the load capacity for appropriate fire safety. Therefore, it is essential to adopt a performance-based approach while designing structural elements' capacity for the desired fire resistance rating. The proposed technique of using non-dimensional parameters will effectively support predicting the load capacity for required fire resistance.

Originality/value

The fire-resistant requirements for reinforced concrete structures are generally established based on standard fire exposure conditions, which account for the fire growth phase. However, it is important to note that concrete structures can experience internal damage over time during the decay phase of fires, which can be quantitatively determined using the proposed non-dimensional parameter approach.

Details

Journal of Structural Fire Engineering, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 2040-2317

Keywords

Open Access
Article
Publication date: 17 May 2024

Alexander Schugardt, Louis Kaiser, Fatih Avcilar and Uwe Schäfer

This paper aims to present an interactive design and simulation tool for permanent magnet synchronous machines based on the finite-element-method. The tool is intended for…

Abstract

Purpose

This paper aims to present an interactive design and simulation tool for permanent magnet synchronous machines based on the finite-element-method. The tool is intended for education and research on electrical machines.

Design/methodology/approach

A coupling between the software MATLAB and finite element method magnetics is used. Several functionalities are included as modular scripts and represented in the form of a graphical user interface. Included are fully parametrized motor models, automatic winding generations and the evaluation of torque waveforms, core losses and speed-torque-diagrams. A survey was conducted to determine how the motivation of students concerning the covered topics is influenced by using the tool.

Findings

Due to its simplicity and the intuitive visualization of the results, the tool provides direct access to the topic of electrical machines without having to deal with separate scripts. The modular structure of the software allows simple extensions with new functions. Because students can directly contribute to the tool with their own work, their motivation for using and extending it increases.

Originality/value

The presented tool offers more functionalities compared to similar free software packages, e.g. the calculation of core losses and speed-torque diagrams. Also, it is designed in such a way that it can be easily understood and extended by students.

Details

COMPEL - The international journal for computation and mathematics in electrical and electronic engineering , vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 0332-1649

Keywords

Article
Publication date: 12 December 2023

Niveen Badra, Hosam Hegazy, Mohamed Mousa, Jiansong Zhang, Sharifah Akmam Syed Zakaria, Said Aboul Haggag and Ibrahim Abdul-Rashied

This research aims to create a methodology that integrates optimization techniques into preliminary cost estimates and predicts the impacts of design alternatives of steel…

Abstract

Purpose

This research aims to create a methodology that integrates optimization techniques into preliminary cost estimates and predicts the impacts of design alternatives of steel pedestrian bridges (SPBs). The cost estimation process uses two main parameters, but the main goal is to create a cost estimation model.

Design/methodology/approach

This study explores a flexible model design that uses computing capabilities for decision-making. Using cost optimization techniques, the model can select an optimal pedestrian bridge system based on multiple criteria that may change independently. This research focuses on four types of SPB systems prevalent in Egypt and worldwide. The study also suggests developing a computerized cost and weight optimization model that enables decision-makers to select the optimal system for SPBs in keeping up with the criteria established for that system.

Findings

In this paper, the authors developed an optimization model for cost estimates of SPBs. The model considers two main parameters: weight and cost. The main contribution of this study based on a parametric study is to propose an approach that enables structural engineers and designers to select the optimum system for SPBs.

Practical implications

The implications of this research from a practical perspective are that the study outlines a feasible approach to develop a computerized model that utilizes the capabilities of computing for quick cost optimization that enables decision-makers to select the optimal system for four common SPBs based on multiple criteria that may change independently and in concert with cost optimization during the preliminary design stage.

Social implications

The model can choose an optimal system for SPBs based on multiple criteria that may change independently and in concert with cost optimization. The resulting optimization model can forecast the optimum cost of the SPBs for different structural spans and road spans based on local unit costs of materials cost of steel structures, fabrication, erection and painting works.

Originality/value

The authors developed a computerized model that uses spreadsheet software's capabilities for cost optimization, enabling decision-makers to select the optimal system for SPBs meeting the criteria established for such a system. Based on structural characteristics and material unit costs, this study shows that using the optimization model for estimating the total direct cost of SPB systems, the project cost can be accurately predicted based on the conceptual design status, and positive prediction outcomes are achieved.

Details

Engineering, Construction and Architectural Management, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 0969-9988

Keywords

Article
Publication date: 6 June 2023

Khair Ul Faisal Wani and Nallasivam K.

The purpose of this study is to numerically model the rigid pavement resting on two-parameter soil and to examine its modal parameters.

Abstract

Purpose

The purpose of this study is to numerically model the rigid pavement resting on two-parameter soil and to examine its modal parameters.

Design/methodology/approach

This study is carried out using a one-dimensional beam element with three rotational and three translational degrees of freedom based on the finite element method. MATLAB programming is used to perform the free vibration analysis of the rigid pavement.

Findings

Cyclic frequency and their corresponding mode shapes were determined. It has been investigated how cyclic frequency changes as a result of variations in the thickness, span length of pavement, shear modulus, modulus of subgrade, different boundary conditions and element discretization. Thickness of the pavement and span length has greater effect on the cyclic frequency. Maximum increase of 29.7% is found on increasing the thickness, whereas the cyclic frequency decreases by 63.49% on increasing span length of pavement.

Research limitations/implications

The pavement's free vibration is the sole subject of the current investigation. This study limits for the preliminary design phase of rigid pavements, where a complete three-dimensional finite element analysis is unnecessary. The current approach can be extended to future research using a different method, such as finite element grilling technique, mesh-free technique on reinforced concrete pavements or jointed concrete pavements.

Originality/value

The finite element approach adopted in this paper involves six degrees of freedom for each node. Furthermore, to the best of the authors’ knowledge, no prior study has done seven separate parametric investigations on the modal analysis of rigid pavement resting on two-parameter soil.

Details

World Journal of Engineering, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 1708-5284

Keywords

1 – 10 of 150