Spreadsheets for business process management

Using process mining to deal with “events” rather than “numbers”?

Wil van der Aalst

Technische Universiteit Eindhoven, Eindhoven, The Netherlands

Abstract

Purpose – Process mining provides a generic collection of techniques to turn event data into valuable insights, improvement ideas, predictions, and recommendations. This paper uses spreadsheets as a metaphor to introduce process mining as an essential tool for data scientists and business analysts. The purpose of this paper is to illustrate that process mining can do with events what spreadsheets can do with numbers.

Design/methodology/approach – The paper discusses the main concepts in both spreadsheets and process mining. Using a concrete data set as a running example, the different types of process mining are explained. Where spreadsheets work with numbers, process mining starts from event data with the aim to analyze processes.

Findings – Differences and commonalities between spreadsheets and process mining are described. Unlike process mining tools like ProM, spreadsheets programs cannot be used to discover processes, check compliance, analyze bottlenecks, animate event data, and provide operational process support. Pointers to existing process mining tools and their functionality are given.

Practical implications – Event logs and operational processes can be found everywhere and process mining techniques are not limited to specific application domains. Comparable to spreadsheet software widely used in finance, production, sales, education, and sports, process mining software can be used in a broad range of organizations.

Originality/value – The paper provides an original view on process mining by relating it to the spreadsheets. The value of spreadsheet-like technology tailored toward the analysis of behavior rather than numbers is illustrated by the over 20 commercial process mining tools available today and the growing adoption in a variety of application domains.

Keywords Process mining, Business process management (BPM), Spreadsheets, Data science

Paper type Viewpoint

1. Introduction

Spreadsheets are used everywhere. A spreadsheet is composed of cells organized in rows and columns. Some cells serve as input, other cells have values computed over a collection of other cells (e.g. taking the sum over an array of cells). “VisiCalc” was the “killer application” for the Apple II computer in 1979 and “Lotus 1-2-3” played a comparable role for the IBM PC in 1983. People were buying these computers in order to run spreadsheet software (Ceruzzi, 2003): a nice example of the “tail” (VisiCalc/Lotus 1-2-3) wagging the “dog” (Apple II/IBM PC). After decades of spectacular IT developments, spreadsheet software can still be found on most computers (e.g. Excel is part of Microsoft’s Office) and can be accessed online (e.g. Google Sheets as part of Google Docs). Spreadsheet software survived 50 years of IT developments because spreadsheets are highly generic and valuable for many. The situations in which spreadsheets can be used in a meaningful way are

© Wil van der Aalst, RWTH. Published by Emerald Publishing Limited. This article is published under the Creative Commons Attribution (CC BY 4.0) licence. Anyone may reproduce, distribute, translate and create derivative works of this article (for both commercial and non-commercial purposes), subject to full attribution to the original publication and authors. The full terms of this licence may be seen at http://creativecommons.org/licences/by/4.0/legalcode
almost endless (Jelen, 2005). Spreadsheets can be used to do anything with numbers. Of course one needs to write dedicated programs if computations get complex or use database technology if data sets get large. However, for the purpose of this paper we assume that spreadsheets adequately deal with numerical data. We would like to argue that process mining software enables users to do anything with events. In this paper, we introduce process mining against the backdrop of spreadsheets.

Instead of numbers we consider discrete events, i.e., things that have happened and could be recorded. Events may take place inside a machine (e.g. an ATM or baggage handling system), inside an enterprise information system (e.g. a purchase decision or salary payment), inside a hospital (e.g. making an X-ray), inside a social network (e.g. sending a Twitter message), inside a transportation system (e.g. checking in at an airport), etc. Events may be “life events,” “machine events,” or “organization events.” The term Internet of Events (IoE), coined in (Aalst, 2014), refers to all event data available. The IoE is roughly composed of the Internet of Content (IoC), the Internet of People (IoP), Internet of Things (IoT) and Internet of Locations (IoL). These are overlapping, e.g., a tweet sent by a mobile phone from a particular location is in the intersection of IoP and IoL. Process mining aims to exploit event data in a meaningful way, for example, to provide insights, identify bottlenecks, anticipate problems, record policy violations, recommend counter-measures, and streamline processes (Aalst, 2016).

Process mining should be in the toolbox of data scientists, business analysts, and others who need to analyze event data. Unfortunately, process mining is not yet a widely adopted technology. Surprisingly, the process perspective is absent in the majority of Big Data initiatives and data science curricula. We argue that event data should be used to improve end-to-end processes: It is not sufficient to consider “numbers” and isolated activities. Data science approaches tend to be process agonistic whereas business process management (BPM) approaches tend to be model-driven without considering the “evidence” hidden in the data (Aalst, 2013).

Developments in BPM have resulted in a well-established set of principles, methods, and tools that combine knowledge from information technology, management sciences, and industrial engineering for the purpose of improving business processes (Weske, 2007; Aalst, 2013; Dumas et al., 2013). BPM can be viewed as a continuation of the workflow management (WFM) wave in the 1990s. The maturity of WFM/BPM is partly reflected by a range of books:

- first comprehensive WFM book focusing on the different workflow perspectives and the MOBILE language (Jablonski and Bussler, 1996);
- book on production WFM systems closely related to IBM’s workflow products (Leymann and Roller, 1999);
- edited book that served as the basis for the BPM conference series (Aalst et al., 2000);
- most cited WFM book; a Petri net-based approach is used to model, analyze and enact workflow processes (Aalst and van Hee, 2004);
- book relating WFM systems to operational performance (Muehlen, 2004);
- edited book on process-aware information systems (Dumas et al., 2005);
- visionary book linking management perspectives to the pi calculus (Smith and Fingar, 2006);
- book presenting the foundations of BPM, including different languages and architectures (Weske, 2007);
- book based on YAWL and the workflow patterns (Hofstede et al., 2010);
handbooks on BPM (Brocke and Rosemann, 2010; Brocke and Rosemann, 2014); book on the design of process-oriented organizations (Becker et al., 2011); book on supporting flexibility in process-aware information systems (Reichert and Weber, 2012); and tutorial-style book covering the whole BPM lifecycle (Dumas et al., 2013).

As mentioned, WFM/BPM approaches tend to be model-driven. Notable exceptions are the process mining approaches developed over the last decade (Aalst, 2016). Process mining can be seen as a means to bridge the gap between data science and classical process management (WFM/BPM) (Aalst, 2013). By framing process mining as a spreadsheet-like technology for event data, we hope to increase awareness in the information systems community.

The remainder of this paper is organized as follows. Section 2 introduces a concrete data set which will be used as a running example. By using an easy-to-understand business setting to introduce both spreadsheets and process mining, we can explain their differences and commonalities. Section 3 summarizes the basic concepts used by spreadsheet software like Excel and also describes the relevance of spreadsheets in a historical context. Section 4 demonstrates that process mining technology can be positioned as spreadsheets to analyze dynamic behavior rather than numbers. Process mining techniques such as process discovery and conformance checking are illustrated using the running example. Section 5 concludes the paper.

2. Running example
As an example, let us consider the process of handling customer orders. Customers can order phones via the website of a telecom company. The customer first places an order. Multiple phones of the same type can be ordered at the same time. The customer is expected to pay before the phones are delivered. An invoice is sent to the customer, but the customer can also pay before receiving the invoice. If the customer does not pay in time, a reminder is sent. This is only done after sending the invoice. If the customer does not pay after two reminders, the order is canceled. If the customer pays, the order’s delivery is prepared, followed by the actual delivery and a confirmation of payment (in any order).

Figure 1 shows some event data recorded for our order handling process. Each row corresponds to an event, i.e., the execution of an activity for a particular order. The highlighted row refers to the sending of a reminder for order 1677 on October 11, 2015. There may be multiple rows (i.e. events) related to the same order. For example, the small fragment shows three events related to order 1672 (see red lines). Order 1672 consists of six events in total. This is close to the average number of events per order (6.38).

Whereas Figure 1 shows the “raw” events, Figure 2 shows more high-level data with precisely one row per order. For example, all events related to order 1672 are “collapsed” into a single row. There are 10,000 orders. Per order we can see the quantity, number of phones ordered, and a zip code with street number (plus possible suffix) uniquely identifying an address in the Netherlands.

The data sets shown in Figures 1 and 2 will be used to introduce process mining techniques and to relate these to spreadsheet-based analysis.

3. Spreadsheets: history and concepts
Most organizations use spreadsheets in financial planning, budgeting, work distribution, etc. Hence, it is interesting to view process mining against the backdrop of this widely used technology.
3.1 History

Richard Mattessich pioneered computerized spreadsheets in the early 1960-ties. Mattessich realized that doing repeated “what-if” analyses by hand is not productive. He described the basic principles (computations on cells in a matrix) of today’s spreadsheets in his research (Mattessich, 1964) and provided some initial Fortran IV code written by his Assistants Tom Schneider and Paul Zitlau. The ideas were not widely adopted because few organizations owned computers. Rene Pardo and Remy Landau created in 1969 the LANPAR (LANguage for Programming Arrays at Random) electronic spreadsheet already allowing for forward references and natural order recalculation (handling cells that depend on one another). Again, the market did not seem ready for spreadsheet software.

The first widely used spreadsheet program was VisiCalc (“Visible Calculator”) developed by Dan Bricklin and Bob Frankston, Founders of Software Arts (later named VisiCorp).
VisiCalc was released in 1979 for the Apple II computer. It is generally considered as Apple II’s “killer application,” because numerous organizations purchased the Apple II computer just to be able to use VisiCalc. In the years that followed the software was ported to other platforms including the Apple III, IBM PC, Commodore PET, and Atari. In the same period SuperCalc (1980) and Multiplan (1982) were released following the success of VisiCalc.

Lotus Development Corporation was founded in 1982 by Mitch Kapor and Jonathan Sachs. They developed Lotus 1-2-3, named after the three ways the product could be used: as a spreadsheet, as a graphics package, and as a database manager. When Lotus 1-2-3 was launched in 1983, VisiCalc sales dropped dramatically. Lotus 1-2-3 took full advantage of IBM PC’s capabilities and better supported data handling and charting. What VisiCalc was for Apple II, Lotus 1-2-3 was for IBM PC. For the second time, a spreadsheet program generated a tremendous growth in computer sales (Rakovic et al., 2014).

Lotus 1-2-3 dominated the spreadsheet market until 1992. The dominance ended with the uptake of Microsoft Windows.

Microsoft’s Excel was released in 1985. Microsoft originally sold the spreadsheet program Multiplan, but replaced it by Excel in an attempt to compete with Lotus 1-2-3. The software was first released for the Macintosh computer in 1985. Microsoft released Excel 2.0 in 1987 which included a run-time version of MS Windows. Five years later, Excel was the market leader and became immensely popular as an integral part of the Microsoft’s Office suite. Borland’s Quattro which was released in 1988 competed together with Lotus 1-2-3 against Excel, but could not sustain a reasonable market share. Excel has dominated the spreadsheet market over the last 25 years. In 2015, the 16th release of Excel became available.

Online cloud-based spreadsheets such as Google Sheets (part of Google Docs since 2006) provide spreadsheet functionality in a web browser. Numbers is a spreadsheet application developed by Apple available on iPhones, iPads (iOS), and Macs (OS X). Dozens of other spreadsheet apps are available via Google Play or Apple’s App Store.

Figure 3 summarizes 55 years of spreadsheet history. The key point is that spreadsheets have been one of the primary reasons to use computers in business environments.

3.2 Basic concepts
In a spreadsheet (sometimes called worksheet), data and formulas are arranged over cells grouped in rows and columns. In Excel, multiple worksheets can be combined into a workbook. Here, we only consider the spreadsheet depicted in Figure 4.

In a spreadsheet, each row is represented by a number and each column is represented by a letter. Cell A1 is the cell where the first row (1) and column (A) meet. Cell D9968 in

Note: The events shown in Figure 3 has been obtained through simulation using CPN tools to avoid showing sensitive data.
Figure 4.
Example spreadsheet analyzing the sales per product
Figure 4 has value 4 indicating that four iPhones were ordered. A cell may have a concrete value or may be computed using an expression operating on any number of cell values.

In Figure 4, row 1 is a header row containing column names. Rows 2 until 10,001 and Columns A-E contain the data values already explained in Figure 2. Row F has 10,000 cells whose values are computed using the values in Columns D and C. The expression associated to a cell may use a range of arithmetic operations (add, subtract, multiply, etc.) and predefined functions (e.g. taking the sum over an array of cells). Excel provides hundreds of functions including statistical functions, math and trigonometry functions, financial functions, and logical functions. The value of cell I9969 was obtained by taking the sum over all values in row F: the total value of all orders summed up to €14,028,176.20.

Figure 4 also shows a so-called pivot table automatically summarizing the data. The pivot table shows the sales per type of phone, both in term of items and revenue. The pie chart shows that the “APPLE iPhone 6 16 GB” was sold most (7,339 phones). The bar chart shows the distribution in terms of revenue. The “APPLE iPhone 6 S Plus 64 GB” ranks fifth although only 1,059 phones were sold.

3.3 Analyzing event data?
Although spreadsheet software is very generic and offers many functions, programs like Excel are not suitable for analyzing event data. In Section 3.2, we analyzed the data of Figure 2 using simple operations such as multiplication, division, counting, and summation. When analyzing dynamic behavior, such operations are not suitable. Consider for example the event data in Figure 1. We can count the number of events per case using a pivot table. However, spreadsheet software cannot be used to analyze bottlenecks and deviations. The process notion is completely missing in spreadsheets. Processes cannot be captured in numerical data and operations like summation.

4. Process mining: spreadsheets for dynamic behavior
As argued in the previous section, spreadsheet software can be used to do anything with numbers. However, spreadsheets cannot capture processes and cannot handle event data well. Therefore, we propose process mining as a spreadsheet-like technology for processes starting from events.

4.1 Event logs
Starting point for any process mining effort is a collection of events commonly referred to as an event log (although events can also be stored in a database). Each event is characterized by:

- a case (also called process instance), e.g., an order number, a patient id, or a business trip;
- an activity, e.g., “evaluate request” or “inform customer”;
- a timestamp, e.g., “2015-11-23T06:38:50+00:00”; and
- additional (optional) attributes such as the resource executing the corresponding event, the type of event (e.g. start, complete, schedule, abort), the location of the event, or the costs of an event.

All events corresponding to a case (i.e. process instance) form a trace. The order of events in a trace is determined by the timestamps. If we focus on activity names only, we can represent the trace corresponding to order 1672 by the sequence: place order, pay, send invoice, prepare delivery, make delivery, and confirm payment. An event log is a collection of events that can be grouped into traces. Dedicated formats such as XES (www.xes-standard.org) and MXML exist to store events data in an unambiguous manner.
Event logs can be used for a wide variety of process mining techniques. Figure 1 shows an event log. The first three columns correspond to the mandatory attributes (case, activity, and timestamp). Cases correspond to orders in this example.

An event log provides a view on reality. Just like a workbook in Excel may hold multiple worksheets, we may consider multiple processes or multiple views on the same process. Sometimes multiple case notions are possible providing different views on the same event data. However, for simplicity, we consider only one, relatively simple, event log (like the one in Figure 1) as input for process mining here.

Process mining seeks the confrontation between event data (i.e. observed behavior) and process models (hand-made or discovered automatically). The interest in process mining is rising. This is reflected by the availability of commercial tools like Disco (Fluxicon), Celonis Process Mining (Celonis), ProcessGold Enterprise Platform (ProcessGold), ARIS PPM (Software AG), QPR ProcessAnalyzer (QPR), SNP Business Process Analysis (SNP AG), minit (Gradient ECM), myInvenio (Cognitive Technology), Perceptive Processing Mining (Lexmark), etc. (see Section 4.8). In the academic world, ProM is the de-facto standard (www.processmining.org) and research groups all over the world have contributed to the hundreds of ProM plug-ins available. All analysis results depicted in this paper were obtained using ProM.

4.2 Exploring event data
Starting from an event log like the one in Figure 1, we can explore the set of events. Simple descriptive statistics can be applied to the event log, e.g., the average flow time of cases or the percentage of cases completed within one week. Univariate statistical analysis focusses on a single variable like flow time, including its central tendency (including the mean, median, and mode) and dispersion (including the range and quantiles of the data set, and measures of spread such as the variance and standard deviation). Bivariate statistical analysis focusses on the relationship between variables, e.g., correlation. However, to get a good feel for the behavior captured in the event log, one needs to look beyond basic descriptive statistics.

Figure 5 shows four so-called “dotted charts” for the data set shown in Figure 1. Each of the four charts shows 63,763 dots arranged over 10,000 rows. The color of the dot refers to the corresponding activity. See the Notes section in Figure 5(b) for the mapping, e.g., the dark blue dot refers to activity place order. In all four diagrams, the X-axis refers to a temporal property of the event and the Y-axis refers to the corresponding case (i.e. customer order). In Figure 5(a) the time since the start of the case is used for the X-axis. All orders start with a blue dot at time zero indicating that cases start with activity place order. The colored bands show that activities tend to happen in certain periods, e.g., the first reminder (if any) is typically sent after a week. One can also see clearly seasonal patterns; at certain periods flow times are considerably longer. Figure 5(a) shows five such periods. In Figure 5(b), the cases are sorted based on their flow time. The top cases take the least time to completion; the bottom cases take the longest. Again one can see clear patterns. For example, cases that take longer have multiple reminders. Figure 5(c) shows the distribution of events over the day. Most activities take place during office hours. One can also note the effect of lunch breaks. During the night we only see blue and purple dots indicating the placing of orders and payments. These activities are done by customers not bound to office hours. Figure 5(d) shows the distribution of events over the week. Again we can clearly notice that, apart from placing of orders and making payments, most activities take place during office hours and not during weekends.

Figure 5 provides insights that get lost if events are aggregated into numbers. Unlike spreadsheets, process mining treats concepts such as case (X)-axis, time (Y-axis), and activity (color dot) as first-class citizens during analysis.
Notes: (a) Case duration sorted on order number; (b) case duration sorted on duration; (c) distribution of events over day; (d) distribution of events over week.
4.3 Process discovery

Most of process mining research focused on the discovery of process models from event data (Aalst, 2016). The process model should be able to capture causalities, choices, concurrency, and loops. Process discovery is a notoriously difficult problem because event logs are often far from complete and there are at least four competing quality dimensions: fitness, simplicity, precision, and generalization. A model with good fitness allows for most of the behavior seen in the event log. A model has a perfect fitness if all traces in the log can be replayed by the model from beginning to end. The simplest model that can explain the behavior seen in the log is the best model. This principle is known as Occam’s Razor. Fitness and simplicity alone are not sufficient to judge the quality of a discovered process model. For example, it is very easy to construct an extremely simple process model that is able to replay all traces in an event log (but also any other event log referring to the same set of activities). Similarly, it is undesirable to have a model that only allows for the exact behavior seen in the event log. Remember that the log contains only example behavior and that many traces that are possible may not have been observed yet. A model is precise if it does not allow for “too much” behavior. A model that is not precise is “underfitting,” i.e., the model allows for behaviors very different from what was seen in the log. At the same time, the model should generalize and not restrict behavior to just the examples seen in the log. A model that does not generalize is “overfitting.” Overfitting means that an overly specific model is generated whereas it is obvious that the log only holds example behavior (i.e. the model explains the particular sample log, but there is a high probability that the model is unable to explain the next batch of cases).

The discussion above shows that process discovery needs to deal with various trade-offs. Therefore, most process discovery algorithms have parameters to influence the result. Hence, different models can be created based on the questions at hand.

Over the last decade, there have been tremendous advances in automated process discovery. Figure 6 shows four process models discovered for the data set consisting of 63,763 events related to 10,000 orders. The first three models have been discovered using the Inductive Miner (Leemans et al., 2014, 2015) and the last one was discovered using the ILP Miner (Werf et al., 2010; Zelst et al., 2015). These models could have been automatically converted to BPMN models (Dumas et al., 2013) or other notations like UML activity diagrams, statecharts, EPCs, and the like. However, to see some of the important subtleties, we keep the native representation used by these process discovery techniques (e.g. a straightforward mapping of the Petri net in Figure 6(d) to a BPMN model having precisely the same behavior is impossible).

Figure 6(a) shows a perfectly fitting process model showing all eight activities. Each case starts with the placement of an order and ends with a cancellation, a delivery, or a confirmation of payment. The diamond shaped “+” nodes correspond to AND-vars splits/Joins.

All other splits/Joins are of type XOR. Figure 6(b) shows a perfectly fitting process model after automatically removing the two least frequent activities. Note that the placement of an order is always followed by the sending of an invoice and sometimes by a payment. For 1,258 orders, there was no payment as shown by the number on the arc bypassing payment activity pay. Figure 6(c) shows another automatically discovered process model, but now the Inductive Miner was asked to uncover the “happy path” (i.e. the most frequent behavior). In this idealized model all customer pay (either before or after receiving the invoice), there are no cancelations, the order is always delivered, and payment is always confirmed.

Figure 6(a) is perfectly fitting but not very precise. Using the ILP Miner, we discovered the Petri net shown in Figure 6(d). Using Petri nets, we can express things missing in the earlier diagrams. For example, Figure 6(d) shows that cancelation only takes place after sending the invoice and missing payment. If the customer pays before cancelation, the order is eventually delivered. Moreover, reminders are only sent after sending the invoice and before payment.
Notes: (a) Process model discovered using the inductive miner without filtering; (b) process model discovered without two low-frequent activities; (c) process model discovered for happy path; (d) process model discovered using the ILP miner.
4.4 Checking compliance

The second type of process mining is conformance checking (Aalst, 2016). Here, an existing process model is compared with an event log of the same process. Conformance checking can be used to check if reality, as recorded in the log, conforms to the model and vice versa. The process model used as input may be hand-made or discovered. To check compliance often a normative handcrafted model is used. However, to find exceptional cases, one can also use a discovered process model showing the mainstream behavior. It is also possible to “repair” process models based on event data.

To illustrate the kind of results conformance checking may deliver, consider Figure 7. The original event log with 63,763 events is replayed on a process model that describes the “happy flow,” i.e., the path followed by orders that are paid in time and not canceled. The model is represented as a Petri net in Figure 7(a), but is from a behavioral point of view identical to Figure 6(c) (i.e. the model discovered based on the most frequent behavior). The replay results show that there are 1,258 cases for which a payment and delivery were both missing.

The diagnostics in Figure 7 are based on so-called alignments, i.e., traces in the event log are mapped onto nearest paths in the model (Aalst et al., 2012). Basically, there are two types of deviations:

1. Move on model: an activity was supposed to happen according to the model but did not happen in reality, i.e., the corresponding event was missing in the event log. Such deviations are indicated in purple.

2. Move on log: an activity happened in reality but was not supposed to happen at this stage according to the model, i.e., there is an event in the log that was not allowed at that point in time. Such deviations are indicated in yellow.

Figure 7(a) shows a model-based view with conformance diagnostics. The small purple lines at the bottom of the four highlighted activities show the moves on model. For example, activity prepare delivery was skipped 1,258 times. The yellow places correspond to states where activities happened in reality, but were not allowed according to the model. Figure 7(b) shows a log-based conformance view. Again the colors indicate deviations.

Using conformance checking one can analyze the severity of the different types of deviations. It is also possible to select cases having a specific type of deviation and automatically see what differentiates them from conforming cases. In this way, we can learn about the root causes of non-conforming behavior.

4.5 Analyzing performance

Using the notion of alignments, we can replay any event log on the corresponding model even when there are deviations. Recall that each event in the log has a timestamp (third column in Figure 1). While replaying the event log, we can take into account these timestamps and measure the time spent in-between activities. This way we can analyze waiting times. If logs have both start and complete events for activities, we can also measure the duration of such activities. If event logs also have resource information, we can detect over/under-utilization of resources. Hence, while replaying we can get all information needed for performance analysis.

All 63,763 events in Figure 1 are complete events. Therefore, we can only analyze the times in-between activities. Figure 8 shows the mean waiting times for activities using the
For 1,258 cases there was no payment. The orders without payment were also not delivered.

Move on log (should not have happened)

Move on model (should have happened)

Notes: (a) Model view showing where the model does not fit reality; (b) log view showing where reality does not fit the model.
On average it takes 6.01 days to send an invoice. No waiting time because place order is the first activity. Preparation of the delivery is often delayed because of the invoice and not the actual payment. After preparation the delivery is done within a day (on average).

Send invoice statistics
Frequency: 10,000 times
Minimum waiting time: 33.2 minutes
Maximum waiting time: 23.00 days
Mean waiting time: 6.01 days
Standard deviation: 3.53 days

Figure 8. Average waiting times for activities computed by replaying the whole event log.
model discovered by the ILP Miner (cf. Figure 6(d)). Next to the mean, we can show the minimum, maximum, median, standard deviation, variance, etc. The main bottleneck in the process seems to be the sending of invoices. It is also possible to select cases taking longer than some normative time and see what differentiates them from the other cases. This allows us to diagnose bottlenecks and generate ideas for process improvement.

4.6 Process animation
Replaying the event log using alignments can be used to generate animations of the process. These are computed based on both the model and event data. Instead of showing a diagram like in Figure 8, we can show a “process movie.” Figure 9 shows snapshots of an animation created using a model discovered by the Inductive Miner. Figure 9(a) shows the status of the overall process (without activity send reminder) at a particular point in time. The moving yellow dots refer to orders recorded in the event log. Figure 9(b) zooms-in on the last part of the model. Figure 9(c) shows the queues for the pay and send invoice activities.

Process animations (like the one shown in Figure 9) help to build consensus in process improvement projects. In most reengineering projects, some stakeholders tend to question numerical arguments or data quality to avoid painful conclusions. However, objectively visualizing the developments in a process (process animation) with the ability to drill down to individual cases, leaves no room for biased interpretations. This helps to shortcut discussions and take the actions needed.

4.7 Operational support
Thus far we only discussed process mining in an offline setting. This helps to understand and improve compliance and performance issues. However, process mining can also be applied in an online setting (Aalst, 2016). We would like to predict delays, warn for risks, and recommend counter-measures. Compare this to the weather forecast, where we are less interested in historic weather data if these cannot be used to predict today’s or tomorrow’s weather. Sometimes delays or risks are partly unavoidable; however, it is valuable to predict them at a point in time where stakeholders can still influence the process.

Most process mining techniques can be employed for operational support, i.e., influencing running processes on-the-fly rather than redesigning them (Aalst, 2016). For example, cases that have not completed yet can be replayed and combined with historic information. Consider, for example, Figure 9(c) showing queue lengths at a particular point in time. Such information can also be provided at runtime. Compare this to the use of Doppler radar to locate precipitation, calculate its motion, and estimate its type (e.g. rain, snow, or hail).

Stochastic process models with probabilities and delay distributions discovered from event data can be used to predict the trajectory of a running case or a group of cases (like the weather radar). Moreover, process models can be continuously revised based on the latest event data. Figure 10 aims to convey the relationship between process analytics and weather information. Operational support is challenging – just like predicting the weather – and only provides the reliable results if the process’s behavior is indeed predictable.

4.8 Tool support
The successful application of process mining relies on good tool support. ProM is the leading open-source process mining tool. The lion’s share of academic research is conducted by using and extending ProM (and related variants such as RapidProM). Many of the commercial process mining tools are based on ideas first developed in the context of ProM. Table I shows an overview of some of the current tools. The functionality of these tools is summarized in Table II. Note that the process mining field is developing rapidly, so the
Figure 9.
Animations created using the event log shown in Figure 1 and a discovered process model.

Notes: (a) Replaying the event log on the model; (b) zooming in on last part of model; (c) queue lengths during replay.
Figure 10. Operational support using process mining: (a) event data and process models are used to create (b) a "process forecast" and (c) a "process radar"
Table I. Overview of available process mining tools (not intended to be incomplete)

<table>
<thead>
<tr>
<th>Name of tool</th>
<th>XES support</th>
<th>Process discovery</th>
<th>Compliance checking</th>
<th>Performance analysis</th>
<th>Process animation</th>
<th>Operational support</th>
</tr>
</thead>
<tbody>
<tr>
<td>Celonis</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>No</td>
</tr>
<tr>
<td>Disco</td>
<td>Yes</td>
<td>Yes</td>
<td>No</td>
<td>Yes</td>
<td>Yes</td>
<td>No</td>
</tr>
<tr>
<td>Fujitsu</td>
<td>No</td>
<td>Yes</td>
<td>No</td>
<td>Yes</td>
<td>No</td>
<td>No</td>
</tr>
<tr>
<td>Icaro</td>
<td>No</td>
<td>Yes</td>
<td>No</td>
<td>Yes</td>
<td>No</td>
<td>No</td>
</tr>
<tr>
<td>Icris</td>
<td>Yes</td>
<td>Yes</td>
<td>No</td>
<td>Yes</td>
<td>No</td>
<td>No</td>
</tr>
<tr>
<td>LANA</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>No</td>
<td>No</td>
</tr>
<tr>
<td>Minit</td>
<td>Yes</td>
<td>Yes</td>
<td>No</td>
<td>Yes</td>
<td>No</td>
<td>No</td>
</tr>
<tr>
<td>mylnvenio</td>
<td>Yes</td>
<td>Yes</td>
<td>No</td>
<td>Yes</td>
<td>Yes</td>
<td>No</td>
</tr>
<tr>
<td>Perceptive</td>
<td>No</td>
<td>Yes</td>
<td>No</td>
<td>Yes</td>
<td>No</td>
<td>No</td>
</tr>
<tr>
<td>ProcessGold</td>
<td>Yes</td>
<td>Yes</td>
<td>No</td>
<td>Yes</td>
<td>No</td>
<td>No</td>
</tr>
<tr>
<td>ProM</td>
<td>Yes</td>
<td>Yes</td>
<td>No</td>
<td>Yes</td>
<td>Yes</td>
<td>No</td>
</tr>
<tr>
<td>ProM Lite</td>
<td>Yes</td>
<td>Yes</td>
<td>No</td>
<td>Yes</td>
<td>Yes</td>
<td>No</td>
</tr>
<tr>
<td>QPR</td>
<td>Yes</td>
<td>Yes</td>
<td>No</td>
<td>Yes</td>
<td>Yes</td>
<td>No</td>
</tr>
<tr>
<td>RapidProM</td>
<td>Yes</td>
<td>Yes</td>
<td>No</td>
<td>Yes</td>
<td>Yes</td>
<td>No</td>
</tr>
<tr>
<td>Rialto</td>
<td>Yes</td>
<td>Yes</td>
<td>No</td>
<td>Yes</td>
<td>Yes</td>
<td>No</td>
</tr>
<tr>
<td>Signavio</td>
<td>No</td>
<td>Yes</td>
<td>No</td>
<td>Yes</td>
<td>Yes</td>
<td>No</td>
</tr>
<tr>
<td>SNP</td>
<td>Yes</td>
<td>Yes</td>
<td>No</td>
<td>Yes</td>
<td>Yes</td>
<td>No</td>
</tr>
<tr>
<td>PPM</td>
<td>No</td>
<td>Yes</td>
<td>No</td>
<td>Yes</td>
<td>Yes</td>
<td>No</td>
</tr>
<tr>
<td>Worksoft</td>
<td>Yes</td>
<td>Yes</td>
<td>No</td>
<td>Yes</td>
<td>Yes</td>
<td>No</td>
</tr>
</tbody>
</table>

Notes: This table is based on the information currently available. The functionality of tools is changing rapidly, so please consult the vendor for the most recent information.
information is likely to be outdated soon. However, the two tables provide a snapshot of the
current tools and their capabilities.

Most tools support XES (www.xes-standard.org), the official IEEE standard for
exchanging event data. All tools support process discovery and performance analysis,
i.e., all can automatically create a process model highlighting the bottlenecks in the process.
There is limited support for conformance checking. Scalability issues (e.g. computing
alignments may be too time consuming) and informal semantics (e.g. not being able to
distinguish between AND-joins and XOR-joins) are some of the hurdles commercial vendors
are facing. Note that in Table II, the comparison of two process model graphs is not
considered as a way to support compliance checking (e.g. myInvenio supports this). In our
view, compliance checking requires replaying observed behavior on a model that has clear
semantics. Most vendors support animation, but operational support (e.g. recommending
the next activity to be executed or predicting future bottlenecks) is rarely supported.

As mentioned, Tables I and II merely provide a snapshot. However, they illustrate the
emergence of a new class of tools able to analyze event data in a truly generic manner.

5. Conclusion

Just like the spreadsheet software, process mining aims to provide a generic approach not
restricted to a particular application domain. Whereas spreadsheets focus on numbers,
process mining focuses on events. There have been some attempts to extend spreadsheets
with process mining capabilities. For example, QPR's ProcessAnalyzer can be deployed as
an Excel add-in. However, processes and events are very different from bar/pie charts and
numbers. Process models and concepts related to cases, events, activities, timestamps,
and resources need to be treated as first-class citizens during analysis. Data mining tools
and spreadsheet programs take as input any tabular data without distinguishing between
these key concepts. As a result, such tools tend to be process-agnostic.

5.1 Comparison of concepts

Table III summarizes some of the main concepts in spreadsheets and process mining.
The event notion does not exist in spreadsheets. Spreadsheets can produce a variety of charts,
but cannot discover a process model from event data. The input for process mining is an event

<table>
<thead>
<tr>
<th>Spreadsheet</th>
<th>Process mining</th>
</tr>
</thead>
</table>

Input
- Worksheet: Event log
- Cell: Event
- Row: Case (process instance)
- Column: Activity
- Timestamp
- Resource
- Type (start, complete, abort, etc.)
- Normative process model

Output
- Bar charts, pie charts, area charts, radar charts, etc.
- Pivot tables
- Sums, averages, standard deviations, etc.
- Discovered process models (control-flow and possibly other perspectives)
- Social networks
- Deviations (e.g. alignments)
- Bottlenecks
- Process-aware predictions and recommendations

Note: Concepts such as case, event, activity, timestamp, and resource do not exist in spreadsheets.

Table III. Summary of the main concepts in spreadsheets and process mining
log that consists of events grouped in cases. Each case (also called process instance) is
described by a sequence of events. Events may have any number of attributes. Each event
refers to an activity and has a timestamp. An event may also refer to a resource (person,
machine, software component, etc.) and carry transactional information (start, complete,
suspend, etc.). Based on event data, a process model can be discovered showing bottlenecks,
mainstream behavior, exceptional execution paths, etc. A process model can also be given as
input to conduct conformance checking or to enrich or repair process models. Any type of
process model can be used as long as it can be related to sequences of events. Table III shows
that discovered models, social networks, compliance diagnostics, predictions, and
recommendations are possible outputs of process mining activities. The table also shows
that the concepts are as generic as the concepts one can find in a spreadsheet.

5.2 Challenges

Still we can learn from spreadsheets and improve the accessibility of process mining.
The direct manipulation of data combined with a large repertoire of functions is very powerful.
Moreover, spreadsheets implicitly encode analysis workflows. Intermediate results stored in
cells can be used as input for subsequent analysis steps. In this context we would like to refer to
RapidProM (Mans et al., 2014) which supports process mining workflows in a visual manner.

The spectacular growth of event data provides many opportunities for automated
process discovery based on facts. Event logs can be replayed on process models to check
conformance and analyze bottlenecks. However, still missing are reliable techniques to
automatically improve operational processes. Existing process mining techniques can be
used to diagnose problems, but the transition from “as-is” to “to-be” models is not yet
supported adequately.

Since the first industrial revolution, productivity has been increasing because of technical
innovations, improvements in the organization of work, and the use of information
technology. Frederick Taylor (1856-1915) introduced the initial principles of scientific
management. In his book *The Principles of Scientific Management*, he proposed to standardize
best practices and suggested techniques for the elimination of waste and inefficiencies
(Taylor, 1919). These ideas have matured and approaches have been developed over the last
century. BPM follows the same tradition. However, the abundance of (event) data is changing
the BPM landscape rapidly. Today, we are witnessing the fourth industrial revolution
(“Industrie 4.0”). Operations management, and in particular operations research, is a branch of
management science heavily relying on modeling. Here a variety of mathematical models
ranging from linear programming and project planning to queuing models, Markov chains,
and simulation are used. These models often focus on a particular decision (at run-time or at
design-time) rather than the process as a whole. The “holy grail” of scientific management has
been to automatically improve operational processes, i.e., to observe a process as it is
unfolding and use this to provide clear and reliable suggestions for improvement. Although the
practical value of evidence-based automated process optimization is evident, it has only been
realized for rather specific operational decisions. However, the omnipresence of event data and
the availability of reliable and fast process mining techniques make it possible to discover
faithful control-flow models and to align reality with these discovered models. This creates
new opportunities for scientific management.

The focus of future process mining research should be on automatically improving
processes by changing the underlying process models or by better controlling existing ones.
How to do this?

- Starting point should be the discovered as-is models. These models and the event
data can be used for comparative process mining. Given multiple variants of the
same process, the same process in different periods, or different types of cases within
the same process, we can discover characteristic commonalities and differences while exploiting the underlying event data. This provides novel diagnostic information aiming at better understanding the factors influencing performance.

- The as-is model can also be used for predictive analytics, e.g., predicting the remaining flow time for a running case or recommending a suitable resource at run-time.

- It is also possible to combine the as-is model with so-called change constraints. Here also domain knowledge is used to determine the “degrees of freedom” in redesign. To automatically suggest improved process designs, as-is models, event data, change constraints, and goals are used as input. The resulting (hopefully) improved to-be process models can be evaluated using a combination of real event data and simulated event data.

The overall approach envisioned supports a data-driven approach to automatically improve process performance. This goes far beyond existing approaches that only support “what-if” analysis and require experts to model the process.

In conclusion, we promoted process mining as a generic technology on the interface between data science and BPM. We hope that process mining will become the “tail wagging the dog” (with the dog being Big Data initiatives) and play a role comparable to spreadsheets. This may seem unrealistic, but there is a clear need to bridge the gap between data science and process management. Process mining provides the glue connecting both worlds, but there is room for improvement. As indicated, the challenge is to move from diagnostics to semi-automated process improvement. Process mining comes in three principal flavors: descriptive, predictive, and prescriptive. The focus has been on descriptive analytics. Now it is time to focus on predictive and prescriptive analytics. Process mining tools like ProM already support techniques like prediction. However, process mining for prescriptive analytics is still a rather unexplored territory in BPM.

References

Mattessich, R. (1964), Simulation of the Firm through a Budget Computer Program, R.D. Irwin, Homewood, IL.

About the author
Dr Wil van der Aalst is a Full Professor at RWTH Aachen University leading the Process and Data Science (PADS) Group. He is also part-time affiliated with the Technische Universiteit Eindhoven (TU/e). Until December 2017, he was the Scientific Director of the Data Science Center Eindhoven.
(DSc/e) and led the Architecture of Information Systems Group at TU/e. Since 2003, he has been holding a part-time position at Queensland University of Technology (QUT). Currently, he is currently a visiting Researcher at Fondazione Bruno Kessler (FBK) in Trento and a Member of the Board of Governors, Tilburg University. His personal research interests include process mining, Petri nets, business process management, workflow management, process modeling, and process analysis. He has published more than 200 journal papers, 20 books (as author or editor), 450 refereed conference/workshop publications, and 65 book chapters. Many of his papers are highly cited (he is one of the most cited computer scientists in the world; according to Google Scholar, he has an H-index of over 135 and has been cited over 80,000 times) and his ideas have influenced researchers, software developers, and standardization committees working on process support. After serving on the editorial boards of over ten scientific journals, he is also playing an advisory role for several companies including Fluxicon, Celonis, and ProcessGold. He received honorary degrees from the Moscow Higher School of Economics (Prof. h.c. Degree), Tsinghua University, and Hasselt University (Dr h.c. Degree). He is also an elected member of the Royal Netherlands Academy of Arts and Sciences, the Royal Holland Society of Sciences and Humanities, and the Academy of Europe. In 2017, he was awarded with a Humboldt Professorship. Wil van der Aalst can be contacted at: wvdaalst@pads.rwth-aachen.de

For instructions on how to order reprints of this article, please visit our website: www.emeraldgrouppublishing.com/licensing/reprints.htm
Or contact us for further details: permissions@emeraldinsight.com