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Abstract

Purpose – This paper focuses on the unconditionally optimal error estimates of a linearized second-order
scheme for a nonlocal nonlinear parabolic problem. The first step of the scheme is based on Crank–Nicholson
method while the second step is the second-order BDF method.
Design/methodology/approach – A rigorous error analysis is done, and optimal L2 error estimates are
derived using the error splitting technique. Some numerical simulations are presented to confirm the study’s
theoretical analysis.
Findings – Optimal L2 error estimates and energy norm.
Originality/value –The goal of this research article is to present and establish the unconditionally optimal error
estimates of a linearized second-order BDF finite element scheme for the reaction-diffusion problem. An optimal
error estimate for the proposedmethods is derived by using the temporal-spatial error splitting techniques, which
split the error between the exact solution and the numerical solution into two parts, that is, the temporal error and
the spatial error. Since the spatial error is not dependent on the time step, the boundedness of the numerical
solution in L∞-norm follows an inverse inequality immediately without any restriction on the grid mesh.

Keywords Error estimate, Finite element method, Crank–Nicolson schemes, BDF scheme,

Nonlocal diffusion term

Paper type Research paper

1. Introduction
In this paper, we consider the following parabolic problem with nonlocal nonlinearity:

ut � aðlðuÞÞΔuþ αjujp−2u ¼ f ðuÞ in Ω3 ð0;T�;
uðx; tÞ ¼ 0 on vΩ3 ð0;T�;
uðx; 0Þ ¼ u0ðxÞ in Ω;

8<: (1.1)

whereΩ⊂Rd, d≥ 1 is again a domain with a smooth boundary vΩ, a and f are functions to be
defined in the next section and l denote a continuous linear form on L2(Ω) given by

lðuðtÞÞ ¼
Z
Ω
gðxÞuðt; xÞdx;

where g is a function on L2(Ω).
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The study of nonlocal parabolic problems has received considerable attention in recent
years ([1–3] and the references therein). This kind of problems arises in various situations, for
instance, u could describe the density of a population (for instance, bacteria) subject to
spreading. The diffusion coefficient a is then supposed to depend on the entire population in
the domain rather than on the local density, that is, moves are guided by considering the
global state of the medium. The problem is nonlocal in the sense that the diffusion coefficient
is determined by a global quantity. Besides its mathematical motivation because of the
presence of the nonlocal term a(l(u)), such problems come from physical situations related to
migration of a population of bacteria in a container inwhich the velocity ofmigration v5 a∇u
depends on the global population in a subdomain Ω0 ⊂ Ω given by a(l(u)).

Simsen and Ferreira [4] have discussed not only the existence and uniqueness of solutions
for this problem but also continuity with respect to initial values, the exponential stability of
weak solutions and important results on the existence of a global attractor. The numerical
methods for the nonlocal problems have been investigated bymany authors as like in Refs [5,
6] and the references therein. However, they are restricted to nonlocal reaction terms or
nonlocal boundary conditions. Chaudhary et al. [7] studied the convergence analysis of the
Crank–Nicolson finite element method for the nonlocal problem involving the Dirichlet
energy. Mbehou et al. [8] studied (1.1) using the Crank–Nicolson Galerkin finite element
method. The main focus on this paper was to present the exponential decay and vanishing of
the solutions in finite time. They also derived the optimal convergence order inL2-norm using
Pr with r ≥ 1 finite elements. Yin and Xu [9] applied the finite-volume method to obtain
approximate solutions for a nonlocal problem on reactive flows in porous media and derived
the optimal convergence order in the L2 norm. Almeida et al. [10] presented convergence
analysis for a fully discretized approximation to a nonlocal problem involving a parabolic
equation with moving boundaries, with the finite element method applied for the space
variables and the Crank–Nicolson method for the time. Recently, Yang et al. [11] derived the
unconditional optimal error estimate of Galerkin FEMs for the time-dependent Klein–
Gordon–Schrodinger equations using the error splitting technique. Also in Ref. [12], Yang
and Jiang applied the linearized second-order backward differentiation formulae (BDF)
Galerkin Finite element methods (FEMs) for the Landau-Lifshitz equations to derive the
unconditional optimal error estimates.

Our goal in this research article is to give and establish the unconditionally optimal error
estimates of a linearized second-order BDF finite element scheme for the reaction-diffusion
problem (1.1). Using Pr (r ≥ 1) finite element to approximate the solution of (1.1), the optimal
error estimates O(Δt2 þ hrþ1) in L2 norm are derived using the error splitting technique.

This paper is organized as follows. In Section 2, we recall few known results and present
few regularities, which are used in the proof of the optimal error estimates. To prove the
optimal error estimates by the error splitting technique, the temporal errors and the spatial
errors are shown in Sections 3 and 4, respectively. Finally numerical results are presented in
Section 5 to demonstrate our theoretical analysis.

2. Preliminaries and main results

Let Ω⊂Rd (d ≥ 1) be a bounded domain with a smooth boundary vΩ 5 Γ. The standard
notations (see for instance Refs [13, 14]) will be used throughout this work. The Lebesgue
space is denoted Lp(Ω), 1 ≤ p ≤ ∞, with norms k$kLp but the L2(Ω)-norm will be denoted by
k $k. For any nonnegative integer m and real number p ≥ 1, the classical Sobolev spaces:

Wm;pðΩÞ ¼
�
v∈LpðΩÞ; Dα v∈LpðΩÞ for all

��α��≤m
�
;

equipped with the semi-norm
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jvjm;p ¼
X
jαj¼m

Z
Ω
jDαvjpdx

( )1=p

;

and the norm

kvkm;p ¼
X

0≤ jαj≤m

Z
Ω
jDαvjpdx

( )1=p

; (2.1)

with the usual extension when p5∞. When p5 2,Wm,p(Ω) is the Hilbert space Hm(Ω) with
the scalar product:

ððv;wÞÞm ¼
X
jαj≤m

ðDαv;DαwÞ

The norm of Hm(Ω) will be denoted by k $km. It should be mentioned that Dα stands for the
derivative in the sense of distribution, while α5 (α1, . . ., αd) denotes a multi-index of length
jαj5 α1þ � � � þ αd. We also employ the standard notation of Bochner spaces, such as Lq(0,T,
X) with norm

kwkLqðXÞ ¼
Z T

0

kwðtÞkqXdt
� �1=q

; 1≤ q < ∞;

kwkL∞ðXÞ ¼ ess sup
0≤t≤T

kwðtÞkX ;

where X is an Hilbert space and k $kX the norm of X. For all these notions on Sobolev spaces
and Bochner spaces, we refer to Refs [13, 15].

Throughout this paper, the following known inequalities will be frequently used [13].

kvkLr ≤Ckvk1 ð2≤ r≤ 6Þ ∀v∈H 1ðΩÞ (2.2)

kvk
∞
≤Ckvk1=2kvk1=22 ∀v∈H 2ðΩÞ: (2.3)

Let us now suppose that α is a nonnegative constant and p>1. Simsen and Ferreira [4] proved
the existence and uniqueness of global solution under the following hypotheses.

H1. u0 ∈ L2(Ω).

H2. f : R→R is Lipschitz–continuous function, that is, there exists γ > 0 such
that jf(s) � f(t)j ≤ γjs � tj, for alls; t ∈R and f(0) 5 0.

H3. a : R→R is boundedwith 0<m≤ a(s)≤M, for all s∈Rwith λ1 >
γ
m
, where λ1

is the first eigenvalue of ð−Δ;H 1
0ðΩÞÞ.

H4. a : R→R is Lipschitz–continuous with jaðs1Þ − aðs2Þj≤A js1 − s2j;
∀s1; s2 ∈R.

H5. l : L2ðΩÞ→R is a continuous linear form, i.e. there exists g ∈ L2(Ω) such that
l(u) 5 lg(u) 5

R
Ω g(x)u(x)dx, for all u ∈ L2(Ω).

Theorem2.1 (Existence and uniqueness of solution, [4]).Assume that p≥ 2 and if the
hypotheses (H1)–(H5) hold, then problem (1.1) possesses a unique solution, that is, there exists a
unique function u such that

u∈L2
�
0;T;H 1

0ðΩÞ \ LpðΩÞ
�
\ C
�
½0;T�;L2ðΩÞ

�
; (2.4)
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ut ∈L2
�
0;T;H−1ðΩÞ

�
; (2.5)

uðx; 0Þ ¼ u0ðxÞ in Ω: (2.6)

ðut; vÞ þ aðlðuÞÞð∇u;∇vÞ þ α
	
jujp−2u; v



¼ ðf ðuÞ; vÞ; ∀v∈H 1

0ðΩÞ; (2.7)

where (2.7) must be understood as an equality in D0ð0;TÞ.
Given the hypotheses (H1)–(H5), we will also adopt another hypothesis, namely

H6. for all r ≥ 1,

ku0kHrþ1 þ kuk
L∞ðHrþ1ðΩÞÞ þ kutkL2ðHrþ1ðΩÞÞ þ kuttkL2ðH1ðΩÞÞ þ kutttkL2ðL2ðΩÞÞ ≤C: (2.8)

The following lemmas will be useful.

Lemma2.1 (cf.Ref. [16]).For all p∈ (1,∞) and τ≥ 0, there exists a generic constant C5C(p,
d) such that for all ξ; η∈Rd with d ≥ 1 we have

kξjp−2ξ� jηjp−2ηj≤Cjξ� ηj1−τðjξj þ jηjÞp−2þτ
: (2.9)	

jξjp−2ξ� jηjp−2η


$ðξ� ηÞ≥Cjξ� ηj2þτðjξj þ jηjÞp−2−τ: (2.10)

Lemma 2.2 (cf. Ref. [3]). Let a and b be two nonnegaitve numbers. Then for all s ∈ (1, ∞),

jas � b
sj≤ ja� bjðaþ bÞs−1: (2.11)

Lemma 2.3 (cf. Ref. [17]). Let ak, bk, ck and γk, for integers k ≥ 0, be the positive numbers
such that

an þ τ
Xn
k¼0

bk ≤ τ
Xn
k¼0

γkak þ τ
Xn
k¼0

ck þ B; for n≥ 0: (2.12)

Suppose that τγk < 1, for all k, and set σk ¼ 1
ð1− τγkÞ

. Then

an þ τ
Xn
k¼0

bk ≤ exp τ
Xn
k¼0

γkσk

 !
τ
Xn
k¼0

ck þ B

 !
; for n≥ 0: (2.13)

Remark. If the first sum on the right hand side of (2.12) extends only up to n � 1, then
estimate (2.13) holds for all k > 0 with σk 5 1.

Lemma 2.4 (Hk-estimate of elliptic equations [18]). Suppose that v is a solution of the
boundary value problem

�Δv ¼ f ; in Ω;
v ¼ 0; on vΩ;

where Ω⊂Rd, d 5 2, 3, is a smooth and bounded domain. Then,

kvkHk ≤CkfkHk�2 ; k ¼ 2; 3: (2.14)

Let T h ¼ fKg be a uniform triangular or tetrahedral partition of Ω into triangles or
tetrahedrons. Thus, let h ¼ maxK∈T h

fhKgdenote the mesh size, where hK5 diam(K)5max
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{kx � yk, x, y ∈ K}, and Vh be the finite dimensional subspace of H 1
0ðΩÞ, which consists of

continuous piecewise polynomials of degree r ≥ 1 on T h.
Let {tnj tn5 nΔt; 0 ≤ n ≤ N} be a uniform partition of [0, T] with time stepΔt5 T/N. We

write un 5 u(x, tn), U
n
≈ u(x, tn) and for any sequence of functions fwngNn¼0 define

D1w
n¼ wn � wn−1

Δt
;

wn ¼ 1

2

�
wn þ wn−1

�
; n ¼ 1; 2 . . . ;N ;

D2w
n ¼ 3

2
D1w

n � 1

2
D1w

n−1 and bwn ¼ 2wn−1 � wn−2; n ¼ 2; . . . ;N :

The following telescope formula is for n ≥ 2

ðD2w
n;wnÞ ¼ 1

4Δt
kwnk2 � kwn−1k2 þ kbwnþ1k2 � kbwnk2 þ kwn � 2wn−1 þ wn−2k2
	 


:

(2.15)

Under the above notations, we propose the following linearized second-order BDF Galerkin
finite element scheme associated to (1.1), which is to find Un

h ∈Vh such that

Step 1: For U 0
h ¼ Πhu0 ∈Vh, find U 1

h ∈Vh such that for all vh ∈ Vh

ðD1U
1
h; vhÞ þ a l bU 1

h

	 
	 

ð∇U 1

h;∇vhÞ þ α jbU 1

hj
p−2

U
1

h; vh

	 

¼ f bU 1

h

	 

; vh

	 

; (2.16)

where bU 1

h is given by

bU 1

h � U 0
h

Δt=2
; vh

 !
þ aðl

�
U 0

h

�
∇bU 1

h;∇vh

	 

þ α jU 0

hj
p−2 bU 1

h; vh

	 

¼
�
f
�
U 0

h

�
; vh
�
: (2.17)

Step 2: For 2 ≤ n ≤ N, find Un
h ∈Vh such that for all vh ∈ Vh

ðD2U
n
h; vhÞ þ a l bUn

h

	 
	 

ð∇Un

h;∇vhÞ þ α jbUn

hj
p−2

Un
h; vh

	 

¼ f bUn

h

	 

; vh

	 

: (2.18)

Πh is an interpolation operator from H 1
0ðΩÞ to Vh.

Theorem 2.2 Assume that the hypotheses (H1)– (H5) hold. Then the fully discrete system
defined in (2.16)–(2.18) has a unique solution Un

h which satisfies

kUn
hk

2 þ kbUnþ1

h k2 þ CΔt
Xn
k¼1

k∇Uk
hk

2
≤Cku0k2: (2.19)

Proof. 1 For the existence, taking vh ¼ U 1
h, vh ¼ bU 1

h and vh ¼ Un
h in (2.16)–(2.18), respectively,

the existence and uniqueness of U 1
h,
bU 1

h and Un
h are from the Lax–Milgram theorem and the

hypothesis (H3).
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Let vh ¼ U
n

h in (2.16), we have

1

2Δt

	
kU 1

hk
2 � kU 0

hk
2


þ a l bU 1

h

	 
	 

k∇U 1

hk
2 þ α jbU 1

hj
p−2

U
1

h;U
1

h

	 

¼ f bU 1

h

	 

;U

1

h

	 

≤ f bU 1

h

	 
��� ���kU 1

hk:

Drop the third term of the left hand side, use the lower bound of a($) and (H2),

1

2Δt

	
kU 1

hk
2 � kU 0

hk
2


þMk∇U 1

hk
2
≤LkbU 1

hkkU
1

hk≤CkbU 1

hk
2 þM

2
k∇U 1

hk
2
:

and

kU 1
hk

2 þ CΔtk∇U 1

hk
2
≤CΔtkbU 1

hk
2 þ ku0k2: (2.20)

Now, let vh ¼ bU 1

h in (2.17), the same arguments used above give us

kbU 1

hk
2 þ CΔtk∇bU 1

hk
2
≤Cku0k2:

Taking vh ¼ Un
h in (2.18), using the lower bound of a($), (H2) and dropping the third term of

the left hand side lead to�
D2U

n
h;U

n
h

�
þMk∇Un

hk
2
≤LkbUn

hkkU
n
hk:

From the telescope (2.15), we obtain

1

4Δt
ðkUn

hk
2 � kUn−1

h k2 þ kbUnþ1

h k2 � kbUn

hk
2Þ þMk∇Un

hk
2
≤CLkbUn

hkk∇U
n
hk

≤CkbUn

hk
2 þM

2
k∇Un

hk
2
:

That is

kUn
hk

2 � kUn−1
h k2 þ kbUnþ1

h k2 � kbUn

hk
2 þM

2
Δtk∇Un

hk
2
≤CkbUn

hk
2
: (2.21)

The relation (2.19) is obtained by summing up the above relation (2.21) and using the discrete
Gronwall lemma 2.3.

The main result of this work is presented in the following theorem.

Theorem2.3 Suppose that system (1.1) has a unique solution u satisfying (H6). Then the fully
discrete system defined in (2.16)–(2.18) has a unique solution Un

h, and

max
0≤n≤N

kun � Un
hk

2 þ kbun � bUn

hk
2 þ Δt

Xn
k¼0

k∇
�
un � Un

h

�
k2

 !
≤C
�
Δt4 þ h

2rþ2
�
; (2.22)

where C is a positive constant independent of Δt and h.

The proof of this theorem will be done in the following sections.
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3. Error estimates for the semi-discrete problem
Let us introduce the corresponding time discrete system associated with (1.1)

Step 1: for U0 5 u0, find U1 by

D1U
1 � a l bU 1

	 
	 

ΔU

1 þ αjbU 1
jp−2U 1 ¼ f bU 1

	 

U 1 ¼ 0 on vΩ;

(
(3.1)

where bU 1
is the solution to

bU 1
� U 0

Δt=2
� aðlðU 0ÞÞΔbU 1

þ αjU 0jp−2 bU 1
¼ f ðU 0Þ

bU 1
¼ 0 on vΩ:

8>><>>: (3.2)

Step 2: for 2 ≤ n ≤ N, find Un by

D2U
n � a l bUn

	 
	 

ΔUn þ αjbUn

jp−2Un ¼ f bUn
	 


Un ¼ 0 on vΩ:

(
(3.3)

The weak formulations of (3.1)–(3.3) are defined as follows: find Un
∈H 1

0 Ωð Þ such that for

all v∈H 1
0 Ωð Þ

D1U
1; v

� �
þ a l bU 1

	 
	 

∇U

1
;∇v

	 

þ α jbU 1

jp−2U 1
; v

	 

¼ f bU 1

	 

; v

	 

; (3.4)

and for 2 ≤ n ≤ N

D2U
n; vð Þ þ a l bUn

	 
	 

∇Un;∇vð Þ þ α jbUn

jp−2Un; v
	 


¼ f bUn
	 


; v
	 


; (3.5)

with bU 1
∈H 1

0 Ωð Þ such that

bU 1
� U 0

Δt=2
; v

 !
þ a l U 0

� �� �
∇bU 1

;∇v
	 


þ α jU 0jp−2 bU 1
; v

	 

¼ f U 0

� �
; v

� �
: (3.6)

The existence and uniqueness of the solution to problems (3.4)–(3.6) can be easily proved by
using Lax–Milgram theorem.

Let u be the exact solution of (1.1). Then, u satisfies the following equations:

D1u
1 � a l bu1	 
	 


Δu1 þ αjbu1jp−2u1 ¼ f bu1	 

þ R1 (3.7)

D2u
n � a l bun� �� �

Δun þ αjbunjp−2un ¼ f bun� �
þ Rn; n ¼ 2; . . . ;N ; (3.8)

where bu1 satisfies
bu1 � u0

Δt=2
� aðlðu0ÞÞΔbu1 þ αju0jp−2bu1 ¼ f ðu0Þ þ bR0

: (3.9)
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bR0
, R1 and Rn are, respectively, the truncation errors given by

bR0
¼

bu1 � u0

Δt=2
� u

1=2
t

 !
� Δbu1 a l u0ð Þð Þ � a l u1=2

� �� �� �
þ αju0jp−2 u1=2 � u0

� �
þ α ju0jp−2u0 � ju1=2jp−2u1=2
	 


þ f u0ð Þ � f u1=2
� �� �

;

R1 ¼ D11u
1 � u

1=2
t

	 

� Δu1 a l bu1	 
	 


� a l u1=2
� �� �	 


� a l u1=2
� �� �

Δ u1 � u1=2
� �

þ αjbu1jp−2 u1 � bu1	 

þ α jbu1jp−2bu1 � ju1=2jp−2u1=2
	 


þ f bu1	 

� f u1=2
� �	 


Rn ¼ D2u
n � unt

� �
� Δun a l bun� �� �

� a l unð Þð Þ
� �

þ αjbunjp−2 un � bun� �
þ α jbunjp−2bun � junjp−2un
	 


þ f bun� �
� f unð Þ

� �
:

By Taylor formula and relation (2.9) with τ 5 1, it is easy to see that

XN
n¼1

ΔtkRnk21

 !1=2

þ ΔtkbR0
k1 ≤CΔt2: (3.10)

Let us denote

e1 ¼ u1 � U
1
; ben ¼ bun � bUn

; en ¼ un � Un for 1≤ n≤N :

We have the following assumption.

Lemma3.1 Assume that the exact solution u of (1.1) satisfies the regularities (2.8). Then there
exists a positive constant C independent of Δt such that

kbe 1k þ Δt1=2k∇be 1k≤CΔt2: (3.11)

Proof. Subtracting (3.6) from (3.9) leads to

2be 1 � Δtaðlðu0ÞÞΔbe 1 þ αΔtju0jp−2be 1 ¼ ΔtbR0
:

Testing the above equation by be1 yield
2kbe 1k2 þ Δtaðlðu0ÞÞk∇be 1k2 þ αΔt

Z
Ω
ju0jp−2jbe 1j2dx ¼ Δt bR0

;be 1	 

Using the left bound of a($) to the left hand side and Young’s inequality to the right hand side,
we obtain

2kbe 1k2 þmΔtk∇be 1k2 þ αΔt
Z
Ω
ju0jp−2jbe 1j2dx≤ 1

2
Δt2kbR0

k2 þ 1

2
kbe 1k2:

The proof ended by dropping the third term of the left hand side and applying (3.10) to the
right hand side.

Based upon (3.11), we have
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Proposition 3.1 Suppose that the solution u of (1.1) satisfies the regularities (2.8). Then there
exists a generic constant C that does not dependent on Δt such that

ke1k2 þ Δtk∇e1k2 ≤CΔt5: (3.12)

Proof. Subtracting (2.16) from (3.7) and observing that e0 5 0 leads to

e1 � Δta l u0ð Þð ÞΔe1 þ αΔtjbu1jp−2e1 ¼ −αΔt u1 jbu1jp−2 � jbU 1
jp−2

	 

þΔtΔu1 a l bu1	 
	 


� a l bU 1
	 
	 
	 


þ Δt f bu1	 

� f bU 1
	 
	 


þ ΔtR1:

Testing the above equation by e1 and using the fact that e1 ¼ 1
2 e

1, we have

ke1k2 þ 1

2
mΔtk∇e1k2 þ 1

2
αΔt

Z
Ω
jbu1jp−2je1j2dx≤ αΔt u1 jbu1jp−2 � jbU 1

jp−2
	 


; e1
	 


þΔt a l bu1	 
	 

� a l bU 1

	 
	 
	 

∇u1;∇e1
� �

þ Δt f bu1	 

� f bU 1
	 


; e1
	 


þ Δt R1; e1
� �

¼
X4
i¼1

I i:

(3.13)

We have

I 1 ¼ αΔt u1 jbu1jp−2 � jbU 1
jp−2

	 

; e1

	 

≤C1 ku1kL∞ ; kbu1kL∞ ; kbU 1

kL∞ ; p
	 


Δtkbe1kke1k
≤C1Δt2kbe1k2 þ 1

4
ke1k2 ≤CΔt6 þ 1

4
ke1k2 using 3:11ð Þð Þ:

I 2 ¼ Δt a l bu1	 
	 

� a l bU 1

	 
	 
	 

∇u1;∇e1
� �

≤ΔtAkbe1kk∇u1kk∇e1k using H4ð Þð Þ

≤C2 A; k∇u1k
� �

Δtkbe1k2 þm

4
Δtk∇e1k2 ≤CΔt5 þm

4
Δtk∇e1k2:

I 3 ¼ Δt f bu1	 

� f bU 1
	 


; e1
	 


≤ γΔtkbe1kke1k using H2ð Þð Þ

≤C3Δt2kbe1k2 þ 1

4
ke1k2 ≤CΔt6 þ 1

4
ke1k2:

I 4 ¼ Δt R1; e1
� �

≤C4kR1k2 þ 1

4
ke1k2 ≤CΔt5 þ 1

4
ke1k2 using 3:11ð Þð Þ:

Taking these estimates into (3.13), we obtain the desire result.

The main result in this section is as follows.

Theorem 3.1 Suppose that the solution u of (1.1) satisfies the regularities (2.8). Then there
exists a generic constant C that does not dependent on Δt such that

max
1≤n≤N

kenk2 þ kbenk2 þ Δt
Xn
k¼1

k∇ekk2
 !

≤CΔt4; (3.14)
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max
0≤n≤N

kUnk
∞
≤C; (3.15)

where C is a positive constant independent of n and Δt.

Proof. The proof of this theorem will be done using the mathematical induction.
In view of (3.11) and (3.12), the inequality (3.14) holds for n 5 0, 1. Since U0 5 u0, the

inquality (3.15) holds for n5 0. Now, let us assume that (3.14) and (3.15) hold for n ≤m with

m ≤ N� 1. Then we need to prove the inequality for n5mþ 1. By the definition of bUn
and

the induction assumption, kbUn
k
∞
≤C.

Subtracting (2.18) from (3.8) results in the following equation:

D2e
n � a l bUn

	 
	 

Δen þ αjbUn

jp−2en ¼ a l bun� �� �
� a l bUn

	 
	 
	 

Δun

�αun jbunjp−2 � jbUn

jp−2
	 


þ f bun� �
� f bUn
	 
	 


þ Rn:
(3.16)

Multiply (3.17) by 4Δten and integrate it over Ω. The use of the telescope formula to the
resulting equation leads to

kenk2 �ken−1k2 þ kbenþ1k2 � kbenk2 þ ken � 2en−1 þ en−2k2 þ 4Δt a l bUn
	 
	 


k∇enk2

þ4Δtα
Z
Ω
jbUn

jp−2jenj2dx ¼ −4Δt a l bun� �� �
� a l bUn

	 
	 
	 

∇un;∇enð Þ

�4Δtα un jbunjp−2 � jbUn

jp−2
	 


; en
	 


þ 4Δt f bun� �
� f bUn
	 


; en
	 


þ 4Δt Rn; enð Þ:

Use the lower bound of a($) and drop certain positive terms on the left hand side of the above
equation leads to

kenk2 �ken−1k2 þ kbenþ1k2 � kbenk2 þ 4mΔtk∇enk2 ≤ 4Δt a l bun� �� �
� a l bUn

	 
	 
	 

∇un;∇enð Þ

þ4Δtα un jbunjp−2 � jbUn

jp−2
	 


; en
	 


þ 4Δt f bun� �
� f bUn
	 


; en
	 


þ 4Δt Rn; enð Þ

¼
X4
k¼1

J k:

(3.17)

We have

J 1 ¼ 4Δt a l bu n� �� �
� a l bUn

	 
	 
	 

∇un;∇enð Þ ≤ 4ΔtAkbe nkk∇unkk∇enk using H4ð Þð Þ

≤ CΔtkbe nk2 þmΔtk∇enk2

J 2 ¼ 4Δtα un jbu njp−2 � jbUn

jp−2
	 


; en
	 


≤ C kunkL∞ ; kbu nkL∞ ; kbUn

kL∞ ; p
	 


Δtkbe nkkenk

≤ CΔt kbe nk2 þ kenk2
	 


J 3 ¼ 4Δt f bu n� �
� f bUn
	 


; en
	 


≤ 4γΔtkbe nkkenk using H2ð Þð Þ

≤CΔt kbe nk2 þ kenk2
	 


:

J 4 ¼ 4Δt Rn; enð Þ≤CΔt kRnk2 þ kenk2
	 


:
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Therefore,

kenk2 � ken−1k2 þ kbe nþ1k2 � kbe nk2 þ Δtk∇enk2 ≤CΔt kenk2 þ kbe nk2 þ kRnk2
	 


:

Summing up the above inequality and using the discrete Gronwall inequality, we get

kenk2 þ kbe nk2 þ Δt
Xn
k¼1

k∇ekk2 ≤CΔt4:

From kenk ≤ CΔt2, we have

kUnk≤ kunk þ kenk≤C;
kDkU

nk≤ kDku
nk þ kDke

nk≤C; with k ¼ 1; 2:

Applying Lemma 2.4 for the linear elliptic problems (3.1)–(3.3) with the induction
assumptions gives the H2 estimate

kUnk2 ≤CkDkU
nk þ Ck∇Unk þ CkjbU n

jp−2Unk þ LkbUn

k
≤C þ CkbUn

kp−2
∞

kUnk≤C:

Using (2.3), we have

kUnk
∞
≤CkUnk1=2kUnk1=22 ≤C

which concludes the proof.

4. Error estimates for the fully discrete problem
In this section, we will prove the optimal spatial error estimates. Let Πh be an interpolation

operator and Rh : H
1
0 Ωð Þ→Vh be a Ritz projection operator defined byZ

Ω
∇ u� Rhuð Þ $∇wdx ¼ 0; ∀w∈H 1

0 Ωð Þ: (4.1)

Then we have the following lemma.

Lemma 4.1 (cf. Ref. [19]). If u∈Hrþ1 Ωð Þ \ H 1
0 Ωð Þ, then

ku� Πhuk þ h k∇ u� Πhuð Þk≤Ch
rþ1kukHrþ1 ; (4.2)

ku� Rhuk þ h k∇ u� Rhuð Þk≤Ch
rþ1kukHrþ1 (4.3)

kvhk∞ ≤Ch
−d=2kvhk; ∀vh ∈Vh: (4.4)

where C is a positive constant that does not depend on h and r.

Let us denote

E0
h ¼ u0 � U 0

h

e1h ¼ RhU
1 � U

1

h; be n

h ¼ Rh
bUn

� bUn

h; enh ¼ RhU
n � Un

h

E
1 ¼ RhU

1 � U
1
; bEn

¼ Rh
bUn

� bUn

; En ¼ RhU
n � Un for 1≤ n≤N :

From lemma 4.1, we have
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kE0
hk þ hk∇E0

hk≤Chrþ1 (4.5)

kE1k þ kbEn

k þ kEnk þ h k∇E1k þ k∇bEn

k þ k∇Enk
	 


≤Ch
rþ1: (4.6)

Lemma4.2 Assume that the exact solution u of (1.1) satisfies the regularities (2.8). Then there
exists a positive constant C independent of Δt and h such that

kbe1hk2 þ Δtk∇be1hk2 ≤Ch
2rþ2 (4.7)

kbU 1

hk≤C: (4.8)

Proof. From equations (2.17) and (3.6), be1h satisfies the following equation:

2 be1h; vh	 

þ Δt aðl

��
U 0

h

���
∇be1h;∇vhÞ þ αΔt jU 0

hj
p−2be1h; vh	 


¼ 2
�
E0

h; vh
�
� 2 bE1

; vh

	 

�Δtðaðl

��
U 0
��

� a
�
l
��
U 0

h

���
∇bU 1

;∇vh

	 

� αΔt jU 0

hj
p−2bE1

; vh

	 

�αΔt

	
jU 0jp−2 � jU 0

hj
p−2

bU 1

; vh

	 

þ Δt

�
f
�
U 0
�
� f
�
U 0

h

�
; vh
�
:

Setting vh ¼ be1h in the above equations leads to

2kbe1hk2 þmΔtk∇be 1

hk
2 þ αΔt

Z
Ω
jU 0

hj
p−2jbe1hj2dx≤ 2 E0

h þ bE1
;be1h	 


þΔtðaðl
��
U 0
��

� a
�
l
��
U 0

h

���
∇bU 1

;∇be 1h	 

þ αΔt jU 0

hj
p−2bE1

;be1h	 

þ αΔt

	
jU 0jp−2 � jU 0

hj
p−2

bU 1

;be1h	 

þ Δt f

�
U 0
�
� f
�
U 0

h

�
;be1h	 


¼
X5
i¼1

Li:

(4.9)

From (4.5) and (4.6), we have

L1 ¼ 2 E0
h þ bE1

;be1h	 

≤Ch2rþ2 þ 1

2
kbe1hk2;

L2 ¼ Δtðaðl
��
U 0
��

� a
�
l
��
U 0

h

���
∇bU 1

;∇be1h	 

≤Δt AkE0

hkk∇bU 1
kk∇be1hk

≤CΔt h2rþ2 þm

2
Δtk∇be 1

hk
2
;

L3 ¼ αΔt jU 0
hj
p−2bE1

;be1h	 

≤ αΔtC

�
kU 0

hk∞
���bE1

kkbe1hk≤CΔt2 h2rþ2 þ 1

4
kbe1hk2;

L4 ¼ αΔt
	
jU 0jp−2 � jU 0

hj
p−2

bU 1

;be1h	 

≤C kU 0k

∞
; kU 0

hk∞; kbU 1
k
∞

	 

Δt kE0

hkkbe1hk
≤CΔt2 h2rþ2 þ 1

4
kbe1hk2;

L5 ¼ Δt f
�
U 0
�
� f
�
U 0

h

�
;be1h	 


≤ γΔtkE0
hkkbe1hk≤CΔt2 h2rþ2 þ 1

4
kbe1hk2:

Combining these estimates into (4.9), we get (4.7).
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From the inverse inequality, kbe1hk∞ ≤Ch−d=2kbe1hk≤Chr=2 and

kbU 1

hk∞ ≤ kRhU
1k

∞
þ kbe1hk∞ ≤C:

The main result in this section is as follows.

Theorem 4.1 Suppose that the exact solution u of (1.1) satisfies the regularities (2.8). Then
there exists a positive constant C independent of Δt and h such that

max
1≤n≤N

kenhk
2 þ kbenhk2 þ Δt

Xn
k¼1

k∇ekhk
2

 !
≤Ch

2rþ2; (4.10)

max
0≤n≤N

kUn
hk≤C: (4.11)

Proof. The proof of this result will be done by mathematical induction. Since U 0
h ¼ ΠhU

0,
(4.11) holds for n5 0. To compute the error estimate (4.10) for n5 1, subtract (3.4) from (2.16)

and take vh ¼ e1h ≡
1
2 ðe1h þ E0

hÞ,

ke1hk
2 þ 2mΔtk∇e1hk

2 þ 2αΔt
Z
Ω
jbU 1

hj
p−2je1hj

2
dx≤ ðE1 þ E0

h; e
1
hÞ

þ 2ΔtðaðlððbU 1
ÞÞ � aðlððbU 1

hÞÞÞð∇U
1
;∇e1hÞ þ 2ΔtαðjbU 1

hj
p−2

E
1
; e1hÞ

þ 2ΔtαððjbU 1
jp−2 � jbU 1

hj
p−2ÞU 1

; e1hÞ þ 2Δtðf ðbU 1
Þ � f ðbU 1

hÞ; e1hÞ

¼
X5
i¼1

Ti:

(4.12)

From (4.5) and (4.6), we have

T1 ¼ ðE1 þ E0
h; e

1
hÞ≤Ch

2rþ2 þ 1

8
ke1hk

2
;

T2 ¼ 2ΔtðaðlððbU 1
ÞÞ � aðlððbU 1

hÞÞÞð∇U
1
;∇e1hÞ≤Δt AkbU 1

� bU 1

hkk∇U
1kk∇e1hk

≤CΔt h2rþ2 þ CΔtkbe1hk2 þm

2
Δtk∇e1hk

2
;

T3 ¼ 2αΔtðjbU 1

hj
p−2

E
1
; e1hÞ≤αΔtCðkbU 1

hk∞ÞkE
1kke1hk≤CΔt2 h2rþ2 þ 1

8
ke1hk

2
;

T4 ¼ 2αΔtððjbU 1
jp−2 � jbU 1

hj
p−2ÞU 1

; e1hÞ≤CðkbU 1
k
∞
; kbU 1

hk∞; kU
1k

∞
ÞΔt kbU 1

� bU 1

hkke1hk

≤CΔt2 h2rþ2 þ CΔt2kbe1hk2 þ 1

8
ke1hk

2
;

T5 ¼ 2Δtðf ðbU 1
Þ � f ðbU 1

hÞ; e1hÞ≤ γΔtkbU 1
� bU 1

hkke1hk≤CΔt2 h2rþ2 þ CΔt2kbe1hk2 þ 1

8
ke1hk

2
:

Taking these estimates into (4.12) and using Lemma 4.2, we conclude that
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ke1hk
2 þ Δtk∇e1hk

2
≤Ch

2rþ2 (4.13)

which proves (4.10) for n 5 1.

Now, we assume that (4.10) and (4.11) hold for n5m� 1, 2≤m≤N, then we need to show

it also holds for n 5 m. By the definition of bUn

h and the induction assumption, kbUn

hk∞ ≤C.
Subtracting (2.18) from (3.5), we obtain

ðD2e
n
h; vhÞ þ aðlððbe n

h ÞÞð∇enh;∇vhÞ þ αðjbe n

h j
p−2

enh; vhÞ ¼ −ðD2E
n; vhÞ

�ðaðlððbUn

ÞÞ � aðlððbUn

hÞÞÞð∇U
n;∇vhÞ � αðjbUn

hj
p−2

En; vhÞ

�αððjbUn

jp−2 � jbUn

hj
p−2ÞUn; vhÞ þ ðf ðbUn

Þ � f ðbUn

hÞ; vhÞ:

If one takes vh ¼ 4Δtenh and uses the telescope formula, one obtains

kenhk
2 �ken−1h k2 þ kbe nþ1

h k2 � kbe n

h k
2 þ kenh � 2en−1h þ en−2h k2 þ 4Δt aðlðbUn

hÞÞk∇enhk
2

þ 4Δtα
Z
Ω
jbUn

hj
p−2jenhj

2
dx ¼ −4ΔtðD2E

n; enhÞ � 4ΔtðaðlðbUn

ÞÞ � aðlðbUn

hÞÞÞð∇U
n;∇enhÞ

� 4ΔtαðjbUn

hj
p−2

En; enhÞ � 4ΔtαððjbUn
jp−2 � jbUn

hj
p−2ÞUn; enhÞ þ 4Δtðf ðbUn

Þ � f ðbUn

hÞ; enhÞ:

That is

kenhk
2 �ken−1h k2 þ kbenþ1

h k2 � kbenhk2 þ 4mΔtk∇enhk
2
≤ 4ΔtðD2E

n; enhÞ

þ 4ΔtðaðlðbUn

ÞÞ � aðlðbUn

hÞÞÞð∇U
n;∇enhÞ þ 4ΔtαðjbUn

hj
p−2

En; enhÞ

þ 4ΔtαððjbUn

jp−2 � jbUn

hj
p−2ÞUn; enhÞ þ 4Δtðf ðbUn

Þ � f ðbUn

hÞ; enhÞ

¼
X5
i¼1

Ki:

(4.14)

The quantities Ki, i 5 1, . . ., 5 can be bounded by the similar way Ti, i 5 1, . . ., 5:

K1 ¼ 4ΔtðD2E
n; enhÞ≤CΔtðkD2E

nk2 þ kenhk
2Þ≤CΔt h2rþ2 þ CΔtkenhk

2
;

K2 ¼ 4ΔtðaðlððbUn

ÞÞ � aðlððbUn

hÞÞÞð∇U
n;∇enhÞ≤Δt AkbEn

þbe n

h kk∇U
nkk∇enhk

≤CΔt h2rþ2 þ CΔtkbe n

h k
2 þmΔtk∇enhk

2
;

K3 ¼ 4αΔtðjbUn

hj
p−2

En; enhÞ≤ 4αΔtCðkbUn

hk∞ÞkE
nkkenhk≤CΔt h2rþ2 þ CΔtkenhk

2
;

K4 ¼ 4αΔtððjbUn

jp−2 � jbUn

hj
p−2ÞUn; enhÞ≤CðkbUn

k
∞
; kbUn

hk∞; kU
nk

∞
ÞΔt kbEn

þbe n

h kkenhk

≤CΔt h2rþ2 þ CΔtðkbe n

h k
2 þ kenhk

2Þ;

K5 ¼ 4Δtðf ðbUn

Þ � f ðbUn

hÞ; enhÞ≤ 4γΔtkbEn

þbenhkkenhk≤CΔt h2rþ2 þ CΔtðkbe n

h k
2 þ kenhk

2Þ:

Taking these bounds into (4.14), we obtain
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kenhk
2 � ken−1h k2 þ kbenþ1

h k2 � kbenhk2 þ 4mΔtk∇enhk
2
≤CΔt h2rþ2 þ CΔtðkbenhk2 þ kenhk

2Þ:

Sum up the above inequality and use the discrete Gronwall Lemma 2.3 leads to

kenhk
2 þ kbe n

h k
2 þ Δt

Xn
k¼1

k∇ekhk
2
≤ expðCTÞh2rþ2:

From the inverse inequality, kenhk∞ ≤Ch−d=2kenhk≤Chr=2 and

kUn
hk∞ ≤ kRhU

nk
∞
þ kenhk∞ ≤C:

5. Numerical results
In this section, we present several numerical simulations to illustrate our theoretical analysis.
Since the resulting matrix of the linear system (2.16)–(2.18) is sparse, symmetric and positive
definite, an incomplete Cholesky factorization is performed and the result is used as
preconditioner in the preconditioned conjugate method iterative solver (see for instance Refs
[20, 21]).

To analyze the convergence rate, we consider the following problem.

ut � aðlðuÞÞΔuþ αjujp−2u ¼ f ðuÞ þ g in Ω3 ð0;T�
uðx; tÞ ¼ 0 on vΩ3 ð0;T�
uðx; 0Þ ¼ u0ðxÞ in Ω;

8<: (5.1)

with Ω 5 (0,1)2, the coefficient α 5 1, p 5 3.5

f ðsÞ ¼ sð10� sÞ; aðsÞ ¼ 3þ cosðsÞ; lðuÞ ¼
Z
Ω
udx:

g is chosen correspondingly to the exact solution

uðx; y; tÞ ¼ 2ð1þ t2expð−tÞÞxyð1� xÞð1� yÞ:

We simulated the above problem on uniform meshes with a linear finite element
approximation (r 5 1) and T 5 0.1.

For the convergence with respect to the mesh size h, we choose Δt 5 h2 and we solve
problem (2.16)–(2.18) with different values of h (h 5 1/5; 1/10; 1/15; 1/20; 1/25); from our
theoretical analysis, the L2-norm errors are in order O(h2 þ Δt2) 5 O(h2 þ h4) ∼ O(h2).
H1-norm errors are in orderO(hþΔt2)5O(hþ h4)∼O(h). In Figure 1, we plot the log of errors
against log(h). One can see that forL2-norm, the slope is almost 2, and forH1� norm, the slope
is almost 1, which are in good agreement with our theoretical analysis.

For the convergence with respect to the time step Δt, h is fixed (h 5 0.01), and we solve
problem (2.16)–(2.18) with different time steps Δt5 0.1; 0.05; 0.025; 0.0125 (Δt 5 0.13 21�l,
l5 1, . . ., 4), and theL2-norm errors are in orderO(h2þΔt2)∼O(Δt2). Figure 2 shows the plots
of log L2-error norm against log(Δt). Again, one can see that the slope is almost 2. These
results are consistent with our theoretical analysis.
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6. Conclusion
We have presented and analyzed a linearized second-order BDF Galerkin finite element
method for the nonlocal parabolic problems. We have proved the L2 and energy error
estimates using sufficient conditions on the exact solution.We also presented some numerical
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Figure 1.
Convergence rate with
respect to the mesh size

h in L2 and H1 norm

Figure 2.
Convergence rate with
respect to the time step

Δt in L2 norm
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experiments on Matlab’s environment, and our numerical results confirm the theoretical
analysis. The results in this paper lay the foundation for developing finite element based
numerical methods for more general and complicated nonlocal problems both stationary and
evolutionary.

References

1. Chipot M, Savitska T. Nonlocal p-Laplace equations depending on the Lp norm of the gradient.
Adv Differ Equ. 2014; 19(11/12): 997-1020.

2. Robalo RJ, Almeida RM, do Carmo Coimbra M, Ferreira J. A reaction–diffusion model for a class
of nonlinear parabolic equations with moving boundaries: existence, uniqueness, exponential
decay and simulation. Appl Math Model. 2014; 38(23): 5609-22.

3. Mbehou M. The Euler-Galerkin finite element method for nonlocal diffusion problems with a
P-Laplace-type operator. Appl Anal. 2019; 98(11): 2031-47.

4. Simsen J, Ferreira J. A global attractor for a nonlocal parabolic problem. Nonlinear Stud. 2014;
21(3): 405-16.

5. Mbehou M, Chendjou G. Numerical methods for a nonlocal parabolic problem with nonlinearity of
Kirchhoff type. Numer Anal Appl. 2019; 12(3): 251-62.

6. Sharma N, Khebchareon M, Sharma K, Pani AK. Finite element g Alerkin approximations to a
class of nonlinear and nonlocal parabolic problems. Numer Methods Partial Differ Equ. 2016;
32(4): 1232-64.

7. Chaudhary S, Srivastava V, Srinivas Kumar V. Finite element scheme with Crank–Nicolson
method for parabolic nonlocal problems involving the Dirichlet energy. Int J Comput Methods.
2016: 1-24.

8. Mbehou M., Maritz R., Tchepmo P. Numerical analysis for a nonlocal parabolic problem. East
Asian J Appl Math. 2016; 6(4): 434-47.

9. Yin Z., Xu Q. A fully discrete symmetric finite volume element approximation of nonlocal reactive
flows in porous media. Math Probl Eng. 2013; 2013: 1-7.

10. Almeida RM, Duque JC, Ferreira J, Robalo RJ. Finite element schemes for a class of nonlocal
parabolic systems with moving boundaries. Appl Numer Math. 2018; 127: 226-48.

11. Yang Y-B, Jiang Y-L, Yu B-H. Unconditional optimal error estimates of linearized, decoupled and
conservative Galerkin FEMs for the Klein–Gordon–Schr€odinger equation. J Sci Comput. 2021;
87(3): 1-32.

12. Yang Y-B, Jiang Y-L. Unconditional optimal error estimates of linearized second-order BDF
Galerkin FEMs for the Landau-Lifshitz equation. Appl Numer Math. 2021; 159: 21-45.

13. Brezis H. Functional analysis, Sobolev spaces and partial differential equations. NY: Springer New
York; 2010.

14. Boffi D, Brezzi F, Fortin M. Mixed finite element methods and applications. Berlin, Heidelberg:
Springer-Verlag; 2013.

15. Lions JL. Quelques M�ethodes de R�esolution des Problmes aux Limites Non Lin�eaires. Paris:
Dunod; 1969.

16. Barrett JW, Liu W. Finite element approximation of the p-Laplacian. Math Comput. 1993;
61(204): 523-37.

17. Heywood JG., Rannacher R, Turek S. Artificial boundaries and flux and pressure conditions
for the incompressible Navier-Stokes equations. Int J Numer Methods Fluids. 1996;
22(5): 325-52.

18. Chen Y-Z, Wu L-C. Second order elliptic equations and elliptic systems. Vol. 174. American
Mathematical Soc., Providence, Rhode Island; 1998.

AJMS
30,1

128



19. Thom�ee V. Galerkin finite element methods for parabolic problems. Berlin, Heidelberg: Springer;
1984. 1054.

20. Koko J. A MATLAB mesh generator for the two-dimensional finite element method. Appl Math
Comput. 2015; 250: 650-64.

21. Koko J. Efficient MATLAB codes for the 2d/3d stokes equation with the mini-element.
Informatica. 2019; 30(2): 243-68.

Corresponding author
M. Mbehou can be contacted at: mohamed.mbehou@facsciences-uy1.cm

For instructions on how to order reprints of this article, please visit our website:
www.emeraldgrouppublishing.com/licensing/reprints.htm
Or contact us for further details: permissions@emeraldinsight.com

Optimal error
estimates of a
BDF scheme

129

mailto:mohamed.mbehou@facsciences-uy1.cm

	Optimal error estimates of a linearized second-order BDF scheme for a nonlocal parabolic problem
	Error estimates for the semi-discrete problem
	Conclusion
	References


