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Abstract

Purpose — This paper focuses on the unconditionally optimal error estimates of a linearized second-order
scheme for a nonlocal nonlinear parabolic problem. The first step of the scheme is based on Crank—Nicholson
method while the second step is the second-order BDF method.

Design/methodology/approach — A rigorous error analysis is done, and optimal L? error estimates are
derived using the error splitting technique. Some numerical simulations are presented to confirm the study’s
theoretical analysis.

Findings — Optimal L? error estimates and energy norm.

Originality/value — The goal of this research article is to present and establish the unconditionally optimal error
estimates of a linearized second-order BDF finite element scheme for the reaction-diffusion problem. An optimal
error estimate for the proposed methods is derived by using the temporal-spatial error splitting techniques, which
split the error between the exact solution and the numerical solution into two parts, that is, the temporal error and
the spatial error. Since the spatial error is not dependent on the time step, the boundedness of the numerical
solution in Loo-norm follows an inverse inequality immediately without any restriction on the grid mesh.
Keywords Error estimate, Finite element method, Crank—Nicolson schemes, BDF scheme,

Nonlocal diffusion term

Paper type Research paper

1. Introduction
In this paper, we consider the following parabolic problem with nonlocal nonlinearity:

wy — a(l(u))Au + alulu = f(u)  inQx (0,7,
u(x,t) =0 on dQ X (0, T, (1.1
u(x,0) = up(x) inQ,

where Q c R? d > 1 is again a domain with a smooth boundary €, @ and fare functions to be
defined in the next section and / denote a continuous linear form on L) given by

Hu(t)) = /Q g(o)u(t, x)dr,
-

where g is a function on LA(Q).
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The study of nonlocal parabolic problems has received considerable attention in recent
years ([1-3] and the references therein). This kind of problems arises in various situations, for
instance, # could describe the density of a population (for instance, bacteria) subject to
spreading. The diffusion coefficient a is then supposed to depend on the entire population in
the domain rather than on the local density, that is, moves are guided by considering the
global state of the medium. The problem is nonlocal in the sense that the diffusion coefficient
is determined by a global quantity. Besides its mathematical motivation because of the
presence of the nonlocal term a(/(x)), such problems come from physical situations related to
migration of a population of bacteria in a container in which the velocity of migrationv = aVu
depends on the global population in a subdomain Q' C Q given by a(/(«)).

Simsen and Ferreira [4] have discussed not only the existence and uniqueness of solutions
for this problem but also continuity with respect to initial values, the exponential stability of
weak solutions and important results on the existence of a global attractor. The numerical
methods for the nonlocal problems have been investigated by many authors as like in Refs [5,
6] and the references therein. However, they are restricted to nonlocal reaction terms or
nonlocal boundary conditions. Chaudhary ef al. 7] studied the convergence analysis of the
Crank—Nicolson finite element method for the nonlocal problem involving the Dirichlet
energy. Mbehou et al [8] studied (1.1) using the Crank—Nicolson Galerkin finite element
method. The main focus on this paper was to present the exponential decay and vanishing of
the solutions in finite time. They also derived the optimal convergence order in Z?-norm using
P, with » > 1 finite elements. Yin and Xu [9] applied the finite-volume method to obtain
approximate solutions for a nonlocal problem on reactive flows in porous media and derived
the optimal convergence order in the L? norm. Almeida et al [10] presented convergence
analysis for a fully discretized approximation to a nonlocal problem involving a parabolic
equation with moving boundaries, with the finite element method applied for the space
variables and the Crank—Nicolson method for the time. Recently, Yang ef @/ [11] derived the
unconditional optimal error estimate of Galerkin FEMs for the time-dependent Klein—
Gordon—Schrodinger equations using the error splitting technique. Also in Ref. [12], Yang
and Jiang applied the linearized second-order backward differentiation formulae (BDF)
Galerkin Finite element methods (FEMs) for the Landau-Lifshitz equations to derive the
unconditional optimal error estimates.

Our goal in this research article is to give and establish the unconditionally optimal error
estimates of a linearized second-order BDF finite element scheme for the reaction-diffusion
problem (1.1). Using P, ( > 1) finite element to approximate the solution of (1.1), the optimal
error estimates O(A# + /) in L? norm are derived using the error splitting technique.

This paper is organized as follows. In Section 2, we recall few known results and present
few regularities, which are used in the proof of the optimal error estimates. To prove the
optimal error estimates by the error splitting technique, the temporal errors and the spatial
errors are shown in Sections 3 and 4, respectively. Finally numerical results are presented in
Section 5 to demonstrate our theoretical analysis.

2. Preliminaries and main results

Let Qc R? (d > 1) be a bounded domain with a smooth boundary dQ = I'. The standard
notations (see for instance Refs [13, 14]) will be used throughout this work. The Lebesgue
space is denoted I/(Q), 1 < p < oo, with norms || -||,» but the L*€)-norm will be denoted by
|| || For any nonnegative integer s and real number p > 1, the classical Sobolev spaces:

W (Q) = {vel’(Q); D"vel’(Q) forall |a|<m},

equipped with the semi-norm
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|U|m,p:{ Z /Q|D"v|de} , 1)

0<|al<m

with the usual extension when p = co. When p = 2, W”?(Q) is the Hilbert space () with
the scalar product:

((v,0)),, = D (D"v,Dfw)

Ja<m

The norm of H”(€) will be denoted by || - ||,,.. It should be mentioned that D* stands for the
derivative in the sense of distribution, while @ = (e, . . ., a;) denotes a multi-index of length
|a| = a1 + - - - + a4 We also employ the standard notation of Bochner spaces, such as L(0, 7,
X) with norm

T 1/q
I\wl\wx>=(/0 \|w<t>||§dt) C12g< o,

[[o0l] = () = €ss sup [[w(?)]l,
0<t<T

where X is an Hilbert space and || - || x the norm of X. For all these notions on Sobolev spaces
and Bochner spaces, we refer to Refs [13, 15].
Throughout this paper, the following known inequalities will be frequently used [13].

[oll <Cllwll, (2<r<6) YweH'(Q) 22)
o]l <Cllo||lolly*  vve HA(Q). 23)
Let us now suppose that « is a nonnegative constant and p > 1. Simsen and Ferreira [4] proved
the existence and uniqueness of global solution under the following hypotheses.
HI. uy e LAQ).
H2 f:R- Ris Lipschitz—continuous function, that is, there exists y > 0 such
that |f(s) — )| < y|s — ¢, for alls, ¢ € Rand f{0) = 0.
H3. a:R- Risbounded with 0 <m < a(s) <M, foralls € Rwith 4; > %, where
is the first eigenvalue of (—A, H}(Q)).

H4. a:R—-R is Lipschitz—continuous with |a(s;) —a(s2)| <A |s1—s2),
VSl, sseR.

H5. [:1° (Q) —» Ris a continuous linear form, i.e. there exists g € L*Q) such that
lw) = L) = o g)ux)dx, for all u € LA(Q).

Theorem 2.1 (Existence and uniqueness of solution, [4]). Assume that p > 2 and if the
hypotheses (H1)—(H5) hold, then problem (1.1) possesses a unique solution, that is, there exists a
unique function u such that

uel’(0,T,Hy(Q) NI (Q)) nc([o, T, LA(Q)), 2.4)



wel’(0,T,H(Q), 2.5)
u(x,0) =up(x) n Q. (2.6)
(r,0) + a(l(w)) (Vu, Vo) + a(|u|1’—2u, v) = (F(u),v), Voe H(), 27)

where (2.7) must be understood as an equality in D'(0, T).
Given the hypotheses (H1)-(H5), we will also adopt another hypothesis, namely
H6. forallr >1,
lloll s + ||”||L°°(H“1(sz)) + ”Ml‘HLz(H”I(Q)) + Hul‘l‘HLz(Hl(Q)) + ||Mm\|L2(L2(sz)) <C. @3

The following lemmas will be useful.

Lemma 2.1 (cf.Ref.[16]). Forallp € (1, 00) and t > 0, there exists a generic constant C = C(p,
d) such that for all £, n € R? with d > 1 we have

&7 — [nl**n| < Cl& — ' (1] + Inly 7. 29

(168726 = Il ™n) - (& = m) = CI = nl*™* (€] + Il 2.10)

Lemma 2.2 (cf. Ref. [3]). Let a and b be two nonnegaitve numbers. Then for all s € (1, o),
& — b'| <|a—b|(a+b)". @.11)

Lemma 2.3 (cf. Ref. [17)). Let ap, by, ¢, and y,, for integers k > 0, be the positive numbers
such that

an+r;bk$r;ykak+r;ck+3, for n>0. 2.12)

Suppose that vy, < 1, for all k, and set 65, = m Then
a, + ’[Zbk <exp <szk6k> (12@ +B>7 for n>0. 2.13)
=0 =0 =0

Remark. If the first sum on the right hand side of (2.12) extends only up to # — 1, then
estimate (2.13) holds for all 2 > 0 with ¢, = 1.

Lemma 2.4 (H*-estimate of elliptic equations [18]). Suppose that v is a solution of the
boundary value problem

—Av=f, in Q,
v=0, on 0Q,

where QCRY d = 2, 3, is a smooth and bounded domain. Then,

ol e <Clf N2y B =2, 3. 2.14)

Let 7, = {K} be a uniform triangular or tetrahedral partition of Q into triangles or
tetrahedrons. Thus, let 2 = maxger, {/ix } denote the mesh size, where /ix = diam(K) = max
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{|lx — ||, , v € K}, and V}, be the finite dimensional subspace of H (1)(9), which consists of
continuous piecewise polynomials of degree » > 1 on 7,
Let {¢,| , = nAt; 0 <n < N} be a uniform partition of [0, 7] with time step At = T/N. We

write «” = u(x, 1), U" =~ u(x, t,) and for any sequence of functions {w”}flv:0 define

n n—1

w —w
D= ——
At

E;z:%(w71+w”_l)7 n:l,Z...,N,
3
2

1 N
Do = =Dy — §D1w”‘1 and @' =2w""'—w"? n=2,...,N.

The following telescope formula is for z > 2
P 1 2112 1112 ~n+12 ~ny2 n n—1 n—21|12
(Do ") = o (11 = a7 + 1@ P = & + oo — 2007 + ).
2.15)

Under the above notations, we propose the following linearized second-order BDF Galerkin
finite element scheme associated to (1.1), which is to find U}, € V}, such that

Step 1: For Ug = ITuy € Vy, find U,lZ € V;, such that for all v, € V),
~1 —1 ~1 , o—1 ~1
(DU 00) +a(1(0,) ) VT, Vo) + (10,70, 0) = (£(T,).01),  @16)
where U ,12 is given by

1

~1
u,-U ~ 273
( b 170,1> +a@(U3) (V0. V0) + a0 2Ty0) = ((U)).0r). @17

Step 2: For 2 < < N, find Uj, € V, such that for all v, € V,
(DU}, v) + a(l(f]Z)) (VUL Vo) + a(|UZ P2y, vh) - ( f(fJZ) : vh). 218)
IT;, is an interpolation operator from H, })(Q) to V.

Theorem 2.2 Assume that the hypotheses (H1)— (H5) hold. Then the fully discrete system
defined in (2.16)-(2.18) has a unique solution Uy, which satisfies

" ~n+1 n 9
TGP+ 11T, I+ CALY " [VU|* < Clluo . 219)
k=1

~1
Proof.1For the existence, taking v, = U }Z, vy = Uyand v, = Uj in (2.16)—(2.18), respectively,

. . ~1 .
the existence and uniqueness of U}, U, and U7 are from the Lax-Milgram theorem and the
hypothesis (H3).



Let vy, = 7,: in (2.16), we have

SA7 = (103 = 103I) + a(1(T,))INTLE + o000, 7))
= (7(0,).T) <[ (@) iz

Drop the third term of the left hand side, use the lower bound of a(-) and (H2),

—1 ~10 1 ~1 M, _—
s (IO}E ~103IP) + MINT,IE <LITT, <CIT,IE + S IVT,P
and

| UL+ CALIVT, 2 < CAL T 1 + ol (2.20)

~1 . )
Now, let v, = U, in (2.17), the same arguments used above give us

T2 + CAHIVTL P < Clluoll?
U7+ CALIVU,|I” < Clluo |-

Taking v, = U} in (2.18), using the lower bound of a(-), (H2) and dropping the third term of
the left hand side lead to

(DU}, Up) + MIVULIE <LIT, U

From the telescope (2.15), we obtain

1 n — ~n+tl ~n . ~n .
4—M(|\Uh|| — U+ 1T, 1P = IULIP) +MIVUGIP < CLIT, VUG

<Cl| T, +—||VU ¥

That is

~n+1

e M
UL = 1T+ 1T, 1P = 1T, + 5 AVU;IP el @21

The relation (2.19) is obtained by summing up the above relation (2.21) and using the discrete
Gronwall lemma 2.3.
The main result of this work is presented in the following theorem.

Theorem 2.3 Suppose that system (1.1) has a unique solution u satisfying (H6). Then the fully
discrete system defined in (2.16)~(2.18) has a unique solution Uy, and

max (HM"— Uil + @' - T, +AtZIIV ' = Uy)l ) C(att + 177, (222

0<n<N —

where Cis a positive constant independent of At and h.

The proof of this theorem will be done in the following sections.
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AJMS 3. Error estimates for the semi-discrete problem
301 Let us introduce the corresponding time discrete system associated with (1.1)
b

Step 1: for U° = u, find U* by

{ DU - a([(f]l) )aT" + a0 20" = f(f]l)

118 U'=0 on 0Q,
where U ! is the solution to
171 - 1 1
Y al(UNAU +U°P?U = f(U°)
Ul =0 on dQ.

Step 2: for 2 <n < N, find U” by

{DZU” - a(l((A]n))AU” +aU'P " :f(f]”)
U'=0 on 0Q.

3.1

3.2

33)

The weak formulations of (3.1)-(3.3) are defined as follows: find U” € H, (1)(9) such that for

allve Hy(Q)

(DU, 0) —&—a(l(f]l)) (VUI,VU) +a(|l71|p_2U1,v) = (f((?l),v),

andfor2<n <N

(D.U",0) +a(1(T") ) (VU Vo) + (|0 20", 0) = (£(T"),0),

with U' € H}(Q) such that

ALj2

34)

(35)

(ﬁ 7 ) +a(U) (VO 90) +a([UP2T00) = (F(0).0). 36)

The existence and uniqueness of the solution to problems (3.4)—(3.6) can be easily proved by

using Lax—Milgram theorem.

Let u be the exact solution of (1.1). Then, « satisfies the following equations:

D — a(Z (ﬁl))ml N (ﬁl) TR
Dot — a(I(i)) 8+ P = £ (i) + ', m=2,...,N,

1 .
where %~ satisfies
~1
u — U

_ ~1 p-2~1 =0
AL a(l(up))Au + alug|”"u = f(up) + R .

3.7)

3.8

39



IA?O, R and R” are, respectively, the truncation errors given by
~1

“- (”A?/? : ”yz> ~ a3 (allw) ~ (1))

+ a|u0|p‘2 (u1/2 _ Mo) + a(|u0|p‘2uo _ |u1/2|p—2u1/2) n (f(uo) —f(ul/z)),
R' = (Dt =) - 8@ (a(1(a')) = a1(2))) = 1)) A @ — u?)

() ) ¢ (1) 107)
R" = (Dou” — u}) — A" (a(I(@")) — a(l(u")))

+ a|/72n|1>—2 (un 7 izﬂ) + a<|ﬁﬂ|ﬁ—2ﬁl o |%n‘P—2%n> + (f(it\n) 7]((”11))

By Taylor formula and relation (2.9) with 7 = 1, it is easy to see that
N 1/2
(Z At|R”|§> + AR, <CAP. (3.10)
n=1
Let us denote
A= —-U, ¢ =a"-U";, ¢ =u—U"for 1<n<N.
We have the following assumption.

Lemma 3.1 Assume that the exact solution u of (1.1) satisfies the regularities (2.8). Then there
exists a positive constant C independent of At such that

121 + A2 Ve < CAL. (3.11)
Proof. Subtracting (3.6) from (3.9) leads to
2¢" — Ata(l(u))Ae" + adtjuol 8" = AR

Testing the above equation by ra yield
~ =0
202" |7 + Ata(i(uy)) V2| + aAt / juol 2" P = at (R 2")

Using the left bound of a(-) to the left hand side and Young’s inequality to the right hand side,
we obtain

. ~ ~ =0 1.
2|1 + mat||ve' | + aAt/ uo P72 Pdx < = At2\|R 1% + Qneluz.
The proof ended by dropping the third term of the left hand side and applying (3.10) to the

right hand side.
Based upon (3.11), we have

Optimal error
estimates of a
BDF scheme




AJMS Proposition 3.1 Suppose that the solution u of (1.1) satisfies the regularities (2.8). Then there
301 exists a generic constant C that does not dependent on At such that

le'|I* + At]|Ve'|* < CAf. (312

Proof. Subtracting (2.16) from (3.7) and observing that ¢° = 0 leads to

120 ¢ — Ata(l(uo) AT + artfi %e = —ant@ (|a1|p_2 B |l71|p‘2)
e (o(1(#)) —a1(0"))) + 3(4(") 1 (T')) + ik

Testing the above equation by ¢' and using the fact that 2! = %el, we have

e +%mAt||Vel||2 + %am‘ / |ﬁ1|"‘2|e1|2dx§aAt(ﬁl (ml P2 |z71|f’-2),e1)
Q
+At(a(l(ﬁ1)) - a(l(Ul))) (Vi', Ve') + At(f(ﬁl) —f(Ul),el) +AHR ¢
=1

13

(3.13)
We have

1= ant(@ ([@'F = 10776 ) < Cu(I s 7 o 1T ) AL '
<C AP + }L||e1||2 <CAS + %Hel”z (using (3.11)).
I = At(a(z(#)) - a(l(f]l))) (Vi Ve') < AtA[[2' ||| V&' ||| Ve!||  (using (H4))
<Cy(A, | V@ ||) atle' || + %AtHVelHZ <CAP + %Atnwln?
Iy = at(f (@) (). ¢) <yat@fllel]  (using (H2))
<C;AL e | +%L||el||2 <CAS + %Luel”z.
I, = At(R',e") <Cy|R'|)? +%He1||2 <CAP +}1||e1|\2 (using (3.11)).

Taking these estimates into (3.13), we obtain the desire result.
The main result in this section is as follows.

Theorem 3.1 Suppose that the solution u of (1.1) satisfies the regularities (2.8). Then there
exists a generic constant C that does not dependent on At such that

n
7112 112 k12 < 4 314
gﬁ(le 7+ 1"l +At;\|ve I ) <CAL, (314)



max ||U"]|, < (3.15)

0<n<N

where C s a positive constant independent of n and At.

Proof. The proof of this theorem will be done using the mathematical induction.
In view of (3.11) and (3.12), the inequality (3.14) holds for # = 0, 1. Since U° = u,, the
inquality (3.15) holds for #z = 0. Now, let us assume that (3.14) and (3.15) hold for # < m with

m <N — 1. Then we need to prove the inequality for #» = m + 1. By the definition of 0" and

the induction assumption, || s |, <C.
Subtracting (2.18) from (3.8) results in the following equation:

D~ a(1(T")) o+l P = (alt@)) - a(1(T")) )2
wt (@02 - |0°P) + (1@) -5 (T)) + R

Multiply (3.17) by 4Ate” and integrate it over Q. The use of the telescope formula to the
resulting equation leads to

[ =l 1P + [0 = @I + e — 26 + | + data(2(T”) ) v
Al / 0" e = ~aat(a(l@)) —a(1(T"))) (V' V)
Q
~anta(w (@17 = |UP) ") +aat(£@) ~£(T"),e") + 4at(R", ).

Use the lower bound of a(-) and drop certain positive terms on the left hand side of the above
equation leads to

11 —lle Y7 + [ — HE"HZ+4mAt||Ve”\|2§4At(a(l(ﬁ")) fa<l((A]n>))(Vu”,Ve”)
+4Ata(u (|u P2 \U"V’*Z),eﬂ) +4At(f(ﬁ") - f(f]n>,e"> FAALR", &)
4

=> I
k=1

3.16)

(3.17)
We have

i _4At< a(i(@")) —a(z(U”)))(w,w") < AAA|R" ||| Va|[||Ve"||  (using (H4))
< CAL|[e"|” + mat||ve'|)?
Jo = 4ata(u ([@"P = 10"07),¢) < C (N o, 18", 10 N0 ) A" ]
< cat(le" + e

Js=4at(f(@") —£(T"),e") styatle”|e'] - (using (H2))
<cat(|fe" | + fle'I).

Ji=4at(R e <CAt(IR') + (1"
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Therefore,
7012 —112 ~n+12 (2 2 2 ~712 7 (12
e = Nl 1" + 118" |1F = [1e”|I” + ag]|ve| SCN(II@”H + e I” + IR )
Summing up the above inequality and using the discrete Gronwall inequality, we get

n
" + 16"|1” + ar >~ Ve < Catt
k=1

From ||¢”|| < CA#, we have

1T < [l || + lle*l < C, ‘
DU | < 1Ditd"[| + |1 Dee”| <€, with k=1, 2.

Applying Lemma 2.4 for the linear elliptic problems (3.1)-(3.3) with the induction
assumptions gives the H? estimate

1U" ), <CIDU"|| + C|VU"| + CI|U " P~°U"|| + LT |
<C+C|U" 14U <C.
Using (2.3), we have
1o <clum oy < ¢

which concludes the proof.

4. Error estimates for the fully discrete problem
In this section, we will prove the optimal spatial error estimates. Let IT;, be an interpolation

operator and R, : H, (1) (Q) - V, be a Ritz projection operator defined by
/vw—Rwvau:o,wEHam. @l
Q

Then we have the following lemma.

Lemma 4.1 (cf. Ref. [19)). [fue H(Q) N H}(Q), then

ot — Xyae|| + 1 ||V (¢ — Xhyae) || < CH | |ut]| o, “2)
le — Ryue|| + 1 ||V (e — Ryu)|| sCh’“||u| ! 4.3)
03l <CH|lvsll, Vo, € Vi 44)

where C1is a positive constant that does not depend on h and r.
Let us denote
E)=u" - U,
2 =RU -U,; o'=RU -Uy; & =RU -U"
E=RU -TU; E =RU -U", E'=RU"—U"for l<n<N.

From lemma 4.1, we have



B3]+ RV ES)| < @5)
B+ 1B+ 1Bl + B (IVE' || + I1VE"|| + | VE"||) < C . 6)

Lemma 4.2 Assume that the exact solution u of (1.1) satisfies the regularities (2.8). Then there
exists a positive constant C independent of At and h such that

241" + At||V g, || < > @)
10,] <C. 48)
Proof. From equations (2.17) and (3.6), 2,11 satisfies the following equation:
2(2), 1) + Atal((U})) (V2), Vo) + ant(JURF 78} 01) = 2(E). ) —2(E 0y
—8ta(((U")) - a(((U)) (YT, ver) — ast(|USP7E 1)
—ant ([0 = [USP )T 0y ) + AL(F(U") = £(U5), ).
Setting v, = E}l in the above equations leads to
2RI+ mAt|V e + aAt/ Uyl Par<2(E) + E 2}
+ Ata((U%) - a(l(U}))) (YO, V2 ) +aat(JUE 7))
+ant (0P - U3) 0 7)) + ar(£(U°) —£(U5).2))
->r

From (4.5) and (4.6), we have

49)

Li=2(E0+B8) <0 + @l
2
~1 ~1 =

Lo = Ata(l((U")) - a(i(U})) (VU VE,) <AtAIENIVT V5

5CAth2’*2+@At||V2}z||2,
Ly=ant(JUSPE 7)) <aatC(| U] ) |11 < a1+ +§||2;||2,

— — A] ~J 1 -~

Li=aat((|U0°P* = 1030 *) 0 .2,) <C(I0 s 10 1T 10 ) AL IERII I

<Car i+ G,

R o 1

Ls= At(£(U°) =F(UD).3) <ratEDII < CAE I + [,

Combining these estimates into (4.9), we get (4.7).
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772 and

From the inverse inequality, |[¢||., < Ch™%/?|[¢; || < Ck
~1 1 1
Ul < NRRU (| + el < C.
The main result in this section is as follows.

Theorem 4.1 Suppose that the exact solution u of (1.1) satisfies the regularities (2.8). Then
there exists a positive constant C independent of At and h such that

n
2112 11012 2112 %42
gfg;(leéll + [, +At;|Veh|>sCh , (4.10)
n
OrgfgvlthH <C. “.11)

Proof. The proof of this result will be done by mathematical induction. Since U 2 =11,U°,
(4.11) holds for # = 0. To compute the error estimate (4.10) for # = 1, subtract (3.4) from (2.16)

and take v, = ¢, =1 (¢} + E)),
ey |I” + 2mAt|| Ve, || + ZGAf/gz\ﬁilp_Z\?}z\zde (E' +Ej;, @)
+20ta(((T)) — a((U,) (YT, Vét) + 2ata(|0, ) 2E )
+2Ata(|0 P72~ |0, AT 8) + 281D ) ~ £(0,).2))

i=1

From (4.5) and (4.6), we have

4.12)

T = (B' 4+ E},2) <O + el

~1 ~1 —1 _ _ =1 ~1 -1 _
Ty =281a(l(U)) = al((U)))(VT , V&) SALAU = U [[[VU [[IVa,]
<CAUR™ + Ctlay)* + 5 At V3,
~1 0 o—1 _ ~1 -1, _ ” 1
Ts=2a0t(|U, I 7)) <adtC(|U, I IE (/71| < CAL 1 + e |,
1o =N AP R ~1 ~1 1 N N
To=2aA((JU 7 = UV 2) <CUU s 1031, 1T )AL = Ul
<SCAP I + CAP | + é”e}i”z,

~1 ~1 _ ~1  ~1 , 5 1
T5=2M1(f(U) = f(U,),8,) <yat||U = U lllle ]| < CA# 1* +2JrCAI/‘ZHeillzJrglle;iIIZ-

Taking these estimates into (4.12) and using Lemma 4.2, we conclude that



el + AtV < O 413 Optimal crror
estimates of a
which proves (4.10) for n = 1. BDF scheme

Now, we assume that (4.10) and (4.11) hold for = m — 1,2 <m < N, then we need to show

it also holds for # = m. By the definition of U Z and the induction assumption, ||U Z I, <C.
Subtracting (2.18) from (3.5), we obtain 125

(Dacyvn) + all(@))(Vej, Vo) + a(ey " ej, v) = —(D:E", )

—(@(U(T") = al(T))(VU", Vo) — ([T, °E", v3)
~a(((U"P2 = |00 o) + (F(T") = £(T), 00)-
If one takes v, = 4Afe] and uses the telescope formula, one obtains
lep 1> = e 11> + Wy 1 = Wy 11 + lleg — 2647 + ep~2|1* + 4ata((T)| Ve
+4Ata / T, P2 Pdx = —4AKDLE" ¢)) — AAHa(l(T")) — a(l(T,)))(VU", Ve})

n

—4Ata(|U,E" &) — 4ata((|U P72 = (U, U", &) + 4t (U") — £(T,), ).

That is

41

gl = ey I + 1251 = IG511° + 4mad]| Ve|* <4aHD:E", €f)
+4Ata((T") - al(Uy)(VU", Vel) + 4ata(|U, ", ¢})

+aata((U'P2 = T, ) + 4atF () - £(O),ey 41

The quantities K;,7 = 1, .. ., 5 can be bounded by the similar way 7;,: =1, ..., 5:

Ky = 4MHD,E", ¢)) <CAH(|IDE"|* + [lep])*) < CAL R + CAt||¢; |,

Ky = 4Ma((U") - al((U)))(VU", Vey) < AtA|E" +2, |IIVU" | Ve |
<CAtH" 2 + CAtl[e)'||* + mat||Ve)|?,

K5 = 4at(|U,[E" ¢}) <4aMC(| U |l ) |E" ||l < CALR*** + CAtlle} |,

Ky =4ast(U" 7 — U, U", ) < CUT [l 1T oo 1U"]1) A IE + 2, e
<CAtI*? 4 Car(lle)|* + llell”),

K5 = 4AH(F(U") = £(U,).¢p) <4rAt|E" + 8l < CALR”* + CAt([e)|” + lle]).

Taking these bounds into (4.14), we obtain
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2 n—112 1 2r+2
le1* — ey 1" + 1185 ™ 11* — 12 1” + 4mAt| Vey||* < CAt I + CAH([ |1 + |e;II)-

Sum up the above inequality and use the discrete Gronwall Lemma 2.3 leads to

legII” + 112,11 +AfZ||V€h|| <exp(CT)h"".
k=1

From the inverse inequality, ||} |, < cn 2He | <Ch/?and

Uil < IR Ul + ll€ill o

5. Numerical results
In this section, we present several numerical simulations to illustrate our theoretical analysis.
Since the resulting matrix of the linear system (2.16)—(2.18) is sparse, symmetric and positive
definite, an incomplete Cholesky factorization is performed and the result is used as
preconditioner in the preconditioned conjugate method iterative solver (see for instance Refs
[20, 21]).

To analyze the convergence rate, we consider the following problem.

{ut—a( (u ))Au+a\u|p_2u:f(u)+g in QX (0,7
u(x,t) =0 on 0QX(0,T] (6.1)
(x,0) =up(x) in Q,

with Q = (0,1), the coefficient a = 1, p = 35
f(s) =s(10—s), a(s)=34+cos(s), [(u)= /udx.
Q

g 1s chosen correspondingly to the exact solution

u(x,v,t) = 2(1 + Pexp(=1))xy(1 — 2)(1 — v).

We simulated the above problem on uniform meshes with a linear finite element
approximation (# = 1) and 7 = 0.1.

For the convergence with respect to the mesh size %, we choose At = /2 and we solve
problem (2.16)—(2.18) with dlfferent values of & (b = 1/5; 1/10; 1/15; 1/20 1/25) from our
theoretlcal analy51s the L%norm errors are in order O(h + Az‘z) = O + I*) ~ O.
H'-norm errors are in order O( + A%) = O(h + h) ~ O(h). In Figure 1, we plot the log of errors
against log(/2). One can see that for L2-norm, the slope is almost 2, and for H' — norm, the slope
is almost 1, which are in good agreement with our theoretical analysis.

For the convergence with respect to the time step A¢f, % is fixed (2 = 0.01), and we solve
problem (2.16)~(2.18) with different time steps At = 0.1; 0.05; 0.025; 0.0125 (At = 0.1 x 217,
I= 4), and the L2 norm errors are in order O(h? + Atz) O(Atz) Figure 2 shows the plots
of log Lz-error norm against log(A#). Again, one can see that the slope is almost 2. These
results are consistent with our theoretical analysis.
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6. Conclusion

We have presented and analyzed a linearized second-order BDF Galerkin finite element
method for the nonlocal parabolic problems. We have proved the L? and energy error
estimates using sufficient conditions on the exact solution. We also presented some numerical
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experiments on Matlab’s environment, and our numerical results confirm the theoretical
analysis. The results in this paper lay the foundation for developing finite element based
numerical methods for more general and complicated nonlocal problems both stationary and
evolutionary.
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