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Abstract

Purpose – In the developing field of nano-materials synthesis, copper oxide nanoparticles (NPs) are deemed to
be one of the most significant transition metal oxides because of their intriguing characteristics. Its synthesis
employing green chemistry principles has become a key source for next-generation antibiotics attributed to its
features such as environmental friendliness, ease of use and affordability. Because they are more
environmentally benign, plants have been employed to create metallic NPs. These plant extracts serve as
capping, stabilising or hydrolytic agents and enable a regulated synthesis as well.
Design/methodology/approach – Organic chemical solvents are harmful and entail intense conditions
during nanoparticle synthesis. The copper oxide NPs (CuO-NPs) synthesised by employing the green
chemistry principle showed potential antitumor properties. Green synthesised CuO-NPs are regarded to be a
strong contender for applications in the pharmacological, biomedical and environmental fields.
Findings – The aim of this study is to evaluate the anticancer potential of CuO-NPs plant extracts to isolate and
characterise the active anticancer principles as well as to yieldmore effective, affordable, and safer cancer therapies.
Originality/value – This review article highlights the copper oxide nanoparticle’s biomedical applications
such as anticancer, antimicrobial, dental and drug delivery properties, future research perspectives and
direction are also discussed.
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1. Background
Nanoscience is a domain of science which encompasses the analysis of properties of matter at
the nanoscale, and it especially concentrates on the distinctive, size-dependent features of
solid-state materials (Mulvaney, 2015). The field of study known as nanotechnology deals
with the creation, engineering and application of nanomaterials, i.e. materials with a size
between one and 100 nanometres (Hasan, 2015).

Nanotechnology has entered our daily lives during the past few years. With an integrated
approach, this ground-breaking technology has been used in numerous fields. There are now
more products and applications that either claim to use nanoparticles (NPs) or contain them.
The same thing takes place in pharmaceutical research (Tinkle et al., 2014). The use of
nanotechnology for illness diagnosis, control, monitoring, prevention and therapy is known
as nanomedicine, which is the application of nanotechnology for medical reasons.

The best course of action is to manufacture and apply nanotechnology using green
processes to reduce the risks involved. The development of engineered nanomaterials is
one of the most important developments in materials science and nanotechnology
(Motahharifar, Nasrollahzadeh, Taheri-Kafrani, Varma, & Shokouhimehr, 2020). Several
industries, including drug delivery and other biomedicinal uses, have been influenced by
nanotechnology (Mahmood, Abbass, Razali, Al-Saffar, & Al-Obaidi, 2021; Mahmood et al.,
2022; Mamidi, Delgadillo, Barrera, Ramakrishna, & Annabi, 2022). There is no question
that NPs pose a health risk that needs to be addressed right away, and their production
and usage are largely unregulated. While risk is minimally considered in the design of
new chemical processes, a set of fundamentals is used to reduce or completely remove
dangerous substances. This is a fundamental aspect of the emerging field of green chemistry
(Hassan et al., 2021).

Due to their numerous applications and physiochemical properties, appropriate synthetic
methods for producing NPs have taken a lot of time and effort to develop (Ahmed et al., 2021).
Unfortunately, many physiochemical methods to create metal NPs are constrained by
environmental pollution brought on by heavy metals. Because of its repeatability,
nontoxicity, simplicity in scaling up, and well-defined structure, the production of NPs by
biological means has become a new trend in the business. Researchers have discovered that
new resources like plants and bacteria exhibit the greatest potential for generating NPs (Hou
et al., 2022). Several microbes, such as fungi, bacteria and yeast, as well as plants, have been
used to create metal NPs. By developing trustworthy, viable and environmentally friendly
synthesis methods, ‘green synthesis’ can be pursued to stop the production of undesired or
unsafe by-products. Metallic NPs have been produced sustainably to include a variety of
biological elements, including fungi, bacteria, algae and plant extracts. In comparison to
bacteria- and/or fungal-assisted synthesis, which is one of the most used greenways for
makingmetal/metal oxide NPs using plant extracts is an easy approach to make NPs in large
quantities. Together, these substances are known as biogenic NPs (Abu Hajleh, Abu-Huwaij,
AL-Samydai, Al-Halaseh, & Al-Dujaili, 2021). Figure 1 shows the categorisation of several
nanoparticle creation techniques and their uses.

2. Classification of nanomaterials
Nanomaterials are the main components of nanotechnology. Materials which have at least
one dimension that is in the nanoscale, or less than 100 nm, are referred to as nanomaterials
(Kolahalam et al., 2019). Nanomaterials are categorised into four groups based on their
dimensions, as shown in Figure 2.

Dry nanotechnology focuses on the creation of inorganic materials including carbon and
silicon, as well as surface science, and chemical and physical qualities. Computational
nanotechnology involves the simulation and modelling of intricate nanometre-scale

Exploring the
potential of

copper oxide

371



structures (Sinha et al., 2009). As demonstrated in Figure 3, these three disciplines have been
integrated to deliver the best performance. As it is possible to recognise nanoscale
compounds based on specific characteristics, there has been the introduction of a broad range
of applications and new avenues of scientific inquiry (Rai, Yadav, & Gade, 2008). Some of the
industries that use nanoproducts are pharmaceuticals, dietary supplements for use in
healthcare products, consumer items, diagnostics, smart delivery systems, bioremediation,
biosensors, growth inhibitors of biofilm development and electronics (Al-Obaidi et al., 2021).

For over a century, metallic NPs have captivated scientists and are now broadly employed
in biological sciences and engineering fields (Lespes, Faucher, & Slaveykova, 2020). In
nanotechnology, the synthesis of metal NPs is regarded to be a crucial topic of research due to

Figure 1.
Classification of
different nanoparticle
synthesis methods (a)
and their
applications (b)

Figure 2.
Nanomaterials
classification based on
dimensionality
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its shape-dependent properties, unusual size (maximum lengths of 200 nm) and appealing
applications in biofuel manufacturing, electronics, biotechnology, medicine and catalysis
(Ganesan, Narasimhalu, Joseph, & Pugazhendhi, 2020). Thus, biogenic synthesis is regarded
to be a significant tool for decreasing the undesirable impacts of NPs that are commonly
employed in laboratories and industry for traditional synthesis techniques.

In recent years, nanotechnology has offered broad applicability (Mamidi & Flores Otero,
2023). Metal-containing NPs find applicability in electronics, biology, physics, medicine and
chemistry (Alishah, Pourseyedi, Ebrahimipour, Mahani, & Rafiei, 2016). The NPs’
considerable exposed surface-to-volume ratio enables them to be used for magnetism,
optics, sensing, biology and as catalysts. The copper-containing NPs display special
properties versus their bulk material (Kanhed et al., 2014). Copper oxide NPs (CuO-NPs) are
categorised as p-type semiconductors as they have a band gap of 1.7 eV (Debbichi, Marco de
Lucas, Pierson, & Kr€uger, 2012).

In the pharmaceutical and organic fields, a commonly used product is 3,4-
dihydropyrimidinones-2(1H)-one (DHPM) Biginelli product (Bhuyan, Saikia, Saikia, &
Materials, 2018). Employing strong acid catalysts is done for the one-pot, three-component
cyclo condensation on an aldehyde, urea and b-ketoester to yield various
dihydropyrimidinones (Barbero, Cadamuro, & Dughera, 2017), which possess significant
pharmacological attributes, like calcium antagonists, antiviral, antihypertensive,
antimalarial, hepatitis B virus replication inhibitors and applicability in various other
activities (Puripat et al., 2015). For this reaction, as a catalyst, mineral acid or Lewis acid is
employed typically; however, there has also been the discovery of different newly developed
heterogeneous catalysts. These include nano zinc oxide ZnO (Tamaddon & Moradi, 2013),
SiO-CuCl2 (Kour, Gupta, Paul, & Gupta, 2014), MnO2-MWCNT (Safari & Gandomi-Ravandi,
2013), CuO@mTiO2@CF (Ghosh et al., 2017), CuS QDs (Chaudhary, Bansal, & Mehta, 2014)
and sulfonated-phenylacetic acid coated Fe3O4 (Prakash et al., 2014). These catalysts are
highly loaded, tough to recover, difficult to synthesise, less reusable, costlier, low rate of

Figure 3.
Nanotechnology

disciplines

Exploring the
potential of

copper oxide

373



product creation, inadequate yield and subject to adverse reaction conditions (Elhamifar,
Mofatehnia, & Faal, 2017).

Copper is regarded to be an essential trace element for plants, animals and humans (Raha,
Mallick, Basak, & Duttaroy, 2020). For a human, it is needed only in minor quantities (Bost
et al., 2016). A typical adult individual weighing 70 kg has roughly 100mg of copper in his/her
body (Shabbir et al., 2020). In humans, copper plays a range of functions, including regulating
cell signalling pathways, improving antioxidant defence, acting as a cofactor for several
enzymes during the synthesis of neuropeptides, and supporting the actions of immune cells in
humans which help in removing pathogens (Waris et al., 2021). The immune cells, which
comprise macrophages, neutrophils and helper T cells, are crucial for the immune system’s
upkeep (Georgopoulos, Roy, Yonone-Lioy, Opiekun, & Lioy, 2001). For optimum plant
growth, copper is regarded to be a crucial trace element (Ghaderian &Ghotbi Ravandi, 2012).
It is important to carry out the normal operation of several essential proteins, including
membrane oxidases and plastocyanin (Sifri, Burke, & Enfield, 2016).

Due to their distinctive thermal, optical, chemical, electrical and biological attributes,
copper oxide NPs are becoming more and more popular (Bhattacharjee & Ahmaruzzaman,
2016). The creation of sensors, supercapacitors, storage devices and infrared filters, as well as
applications in the environmental and health sectors, are all made possible by these features
(Dagher, Haik, Ayesh, & Tit, 2014). Additionally, CuO-NPs are excellent candidates to be
employed as therapeutic agents due to their antimicrobial properties (Nations et al., 2015). To
address drug resistance, researchers are currently up against a significant hurdle in the
healthcare industry. Physical, biological, and chemical processes are among the various
enhanced synthesis methodologies that are being developed in this area (Soomro et al., 2014).
Thus, the “green chemistry” concept, which employs natural sources such as microbes and
plants for synthesising products, could be a promising solution to deal with these
shortcomings (Kiranmai et al., 2017).

3. Biogenic synthesis of CuO-NPs
A range of physical, chemical and biological techniques are employed for synthesising copper
oxide NPs. These techniques encompass precipitation, sonochemical, chemical reduction,
hydrothermal approach, electrothermal, non-vacuum and sol-gel spin coating, chemical bath
deposition and green chemistry mode (Sackey et al., 2020). These techniques can be divided
into two groups: bottom-up and top-down approaches (Khan, Saeed, & Khan, 2019) as
presented in Figure 4. In the bottom-up method, miniature atomic scale particles get
combined to yield nanoscale particles, but in the top-down method, the larger molecules are
fragmented into smaller ones, and these tiny molecules start developing into appropriate
nanomaterials (Khan et al., 2019). Copper oxide NPs that have been synthesised employing
greenmethods are deemed to be more stable, durable, cost-efficient, safe and possess a longer
shelf life. A range of biotic resources has been employed to synthesise copper oxide NPsNPs
(Buazar, Sweidi, Badri, Kroushawi, & synthesis, 2019). Table 1 shows some of the biogenic
techniques reported for the production of CuO-NPs.

3.1 Plant-mediated nanoparticle synthesis
Plant-mediated nanoparticle synthesis ismore advantageous than bacteria-, algae- and fungi-
mediated nanoparticle production since the latter are time-consuming due to the high
maintenance culture and continuous sterile conditions required (Chandraker, Ghosh, Lal, &
Shukla, 2021). Because plant parts including the stem, leaves, roots and fruit contain
phytochemicals that help with the bio-reduction of metallic ions, they have been used in the
green manufacturing of NPs (Iwuozor, Ogunfowora, & Oyekunle, 2021). It was discovered
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that the therapeutic characteristics of the plant extract covered the NPs that were created
from it, and they might be used in medication, cosmetic applications and targeted drug
delivery (Saranyaadevi, Subha, Ravindran,&Renganathan, 2014). The leaves of the olive tree
have multiple potentially bioactive compounds that may have antiatherogenic (Harwood,
Yaqoob, & Technology, 2002), antioxidant (El & Karakaya, 2009) and anti-inflammatory
properties (Sulaiman, Tawfeeq, & Jaaffer, 2018). Oleuropein, hydroxytyrosol and other
flavonoids, the most prevalent class of polyphenolics in the human diet, are thought to
represent themainmedicinal components of olive leaves. Olive leaves’ anti-oxidant properties
shield the body from free radicals’ ongoing activity (Yoneyama et al., 2003).

A great amount of reducing agents is present in fruit extracts. For instance, fruits such as
blackberries, Cornus mas L., blueberries, Citrullus lanatus, grape, Terminalia arjuna and
Punica granatum L., have a high number of anthocyanins, phenolic compounds, ascorbic
acid, flavonoids, saccharides and other vitamins (Timoszyk, 2018). Cantaloupe peels also
showed potential for the synthesis of CuO-NPs (Saleh et al., 2022). An additional benefit is
provided when NPs are prepared from fruits versus NPs prepared based on the biological
method. Microbes mediate the biological method during the synthesis of NP, and these
microbes must be pure strains and maintained in an uncontaminated environment. In
addition, during downstream processing, it is challenging to separate NPs from a microbial
broth culture. Transformation of the metallic salts (soluble) into the elemental oxide/
elemental NPs requires time (Kumar et al., 2020). For biosynthesising CuO-NPs, employing

Figure 4.
Several methods for
synthesising copper
oxide nanoparticles
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banana peel extract to act as a stabilising and reducing agent is regarded to be a simple and
environment-friendly method. As per the results, employing the banana peel extract to
synthesise CuO-NPs has yielded high purity with an average particle size of 60 nm
(Aminuzzaman, Kei, & Liang, 2017). In addition, sweet lime peel extract has also been
employed for synthesising CuO-NPs.

3.2 Fungal-mediated synthesis of CuO-NPs
Attention to a range of fungi species has been given to the green production of copper oxide
and other metal NPs (Chakraborty et al., 2022). Fungi have a high potential in synthesising
NPs in numerous ways in comparison to other microorganisms. Fungi can withstand
bioreactor conditions such as high pressure and temperature in comparison to bacteria. Cell-
free microorganism extracts take on the role of agents that reduce, catalyse or cap the NPs’
biogenic fabrication (Narayanan, Sakthivel, & science, 2010). Trichoderma, a well-known
species of fungi, generates various bioactive metabolites, such as pyrones, terpenes,
polyketides, glycolipids, diketopiperazine and enzymes. However, these metabolites have
nothing to do with synthesising copper oxide NPs (Fayaz et al., 2010). There are two primary
pathways bywhich fungi synthesise NPs: intracellular aswell as extracellular. The size of the
nanoparticle produced inside the fungal species is much smaller and possesses good

Biogenic source of
CuO-NPs

Particle size of
CuO-NPs Application Reference

Malva sylvestris leaf 5–30 nm Antimicrobial activity Kuppusamy, Yusoff,
Maniam, andGovindan (2016)

Gloriosa superba L 5–10 nm Antimicrobial activity Naika et al. (2015)
Black soya bean (Glycine
max)

26.6 nm HeLa cells Nagajyothi, Muthuraman,
Sreekanth, Kim, and Shim
(2017)

Centella asiatica leaves 27.65–8.19 nm Photo catalytic
degradation of Methyl
Orange

Markus et al. (2016)

Eucalyptus Globoulus leaf
extract

88 nm – Alhalili (2022)

Nilgirianthus ciliatus plant
extract

20 nm Antimicrobial activity
Anticancer activity

Rajamma, Gopalakrishnan
Nair, Abdul Khadar, and
Baskaran (2020)

Annona muricata L plant
extract

33.24 ± 6.49 nm Anticancer activity Mahmood et al. (2022)

Lactobacillus casei subsp.
casei

30 nm to 75 nm Antimicrobial activity
Anticancer activity

Kouhkan, Ahangar,
Babaganjeh, and Allahyari-
Devin (2020)

Syzygium alternifolium
stem bark

17.2 nm Antimicrobial activity
Anticancer activity

Yugandhar, Vasavi, Uma
Maheswari Devi, and
Savithramma (2017)

Camellia sinensis extract
and Prunus africana bark
extract

3 to 192 nm
4–576 nm

Antimicrobial,
Antioxidant and
Photocatalytic
Performances

Ssekatawa et al. (2022)

Prunus dulcis (gum) 16 nm–25 nm Antimicrobial effects Nithiyavathi et al. (2021)
Brevibacillus brevis PI-5 2–28 nm Antimicrobial activity

Anticancer activity
Fouda et al. (2022)

Aerva javanica plant leaf
extract

15–23 nm range Antimicrobial, antifungal,
and cytotoxic activitiy

Amin et al. (2021)

Populus ciliate leaf extract 50 to 60 nm antimicrobial activity Hafeez et al. (2019)

Table 1.
Example of biogenic
approaches reported
for the synthesis of
CuO-NPs
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dimensions and dispersity versus the ones synthesised via the extracellular pathway
(Mukherjee et al., 2001). There is a chance that the synthesised NPs are not contaminated by
cell components. For the synthesis of NPsNPs, the fungi’s extracellular pathway is broadly
employed as the fungi secrete different metabolites, which can help to decrease and stabilise
the process of nanoparticle synthesis (Shankar, Ahmad, Pasricha, & Sastry, 2003).

3.3 Bacterial-mediated synthesis of CuO-NPs
Bacteria have immense potential in nanoparticle synthesis. They have short generation
times and are easy to manipulate at the genetic level. Large energy requirements for
metallic reduction are met by molecules like enzymes that are well characterised in their
roles as oxidoreductases. Enzymatic proteins that have an affinity for inorganic surfaces
have been well studied in the case of gold crystals and their specific feature which is a
repetitive sequence of amino acids, has been identified. These proteins possess catalytic
properties and gold-binding properties. At the same time, the amphipathic nature of
lipids makes them a promising role as capping agents (Brown, Sarikaya, &
Johnson, 2000).

A study reported employing cell-free culture supernatant of MHM38, a marine
Streptomyces sp., to synthesise CuO-NPs. Considerable increase was seen in the enzymatic
and nonenzymatic antioxidants of the CuO-NP groups in GSH and SOD levels, while
exceptionally low levels of nitric oxide and malondialdehyde were seen for the paracetamol
group (Bukhari et al., 2021).

Marine entophytic actinomycetes were employed as stabilising and reducing agents
based on the biological route to prepare CuO-NPs. This study concluded that excellent
biomedical applications were displayed by the actinomycetes-mediated CuO-NPs versus
biofilm-yielding bacteria and cancer cells, and these can also be employed for future studies
about different biomedical applications (Zhao et al., 2022).

For stabilising and reducing CuO-NPs, Brevibacillus brevis PI-5 was employed as a
biocatalyst. The small-sized CuO-NPs that were synthesised showed highly orientated
activity for breast cancer cell lines (T47D), even at a lower dose, versus activity towards
normal cell lines. Finally, high mortality percentages were shown by bacteria-mediated CuO-
NPs, which lied in the range of 86.9%± 2.1% to 53.1%± 1.4%with regards to instar larvae of
Culex antennatus (Fouda et al., 2022).

4. Anticancer activity of CuO-NPs
Cancer diseases involve abnormal cell growth, which may also spread to other body parts
(Shamsee, Al-Saffar, Al-Shanon, &Al-Obaidi, 2019). The CuO-NPs that are green synthesised
exhibited promising anticancer activity vis-a-vis various cancer cell lines. Green synthesised
CuO-NPs have been proven to be effective in pharmaceutical, environmental and biomedical
applications.

To assess the anti-cancer properties of copper CuO-NPs, research was conducted utilising
an easy bio-synthesis method and plant extract from A. muricata. According to a study,
treatment with CuO-NPs increased the formation of lactate dehydrogenase (LDH), which was
most likely brought on by cell membrane disruption that led to leaks containing cellular
components including lactate dehydrogenase. Therefore, according to research findings, the
produced CuO-NPs triggered anti-proliferative effects by inducing cell death via apoptosis
(Mahmood et al., 2022).

CuO-NPs aid in the positive regulation of the caspase cascade pathway for mitochondrial
and death receptor-mediated apoptosis in A549 cells (Kalaiarasi et al., 2018).
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A decline in dose-dependent cell viability was exhibited by the biogenic CuO-NPs with a
50% inhibitory concentration (IC50) at 20 μg/ml. In the breast tumour cell line, CuO-NPs
displayed a significant potential to fight against cancer (Zughaibi et al., 2022).

The green-synthesised CuO-NPs exhibited high potential for treating a few types of cancer
such as breast (MCF-7, HBL-100 and AMJ-13 cell lines) (Thamer & Barakat, 2019), gastric
cancer (human adenocarcinoma AGS cell line), colon (HCT-116), cancer (A549),

Cytotoxic behaviour on human lung cancer cell edge (A549) conducted using CuO-NPs
confirmed the considerable anticancer behaviour of the CuO-NPs prepared (Shwetha
et al., 2021).

5. Antimicrobial activity of CuO-NP
The prepared CuO-NPs have been subjected to screening for their antimicrobial effectiveness
against various strains of bacteria, like Gram-positive (Bacillus subtilis and Staphylococcus
aureus) and Gram-negative (Salmonella Paratyphi, Enterobacter aerogenes and Klebsiella
pneumonia). The synthesised NPs exhibited significant activity in curbing pathogenic
bacteria (Jeronsia, Raj, Joseph, Rubini, & Das, 2016).

The CuO-NPs demonstrated significant antifungal inhibition activity against Aspergillus
flavus and Aspergillus niantimicrobialger (3.0 ± 4.24 mm) (Alao, Oyekunle, Iwuozor, &
Emenike, 2022).

Due to the therapeutic effects of the bacteria utilised in nanoparticlemanufacturing, green-
synthesized NPs display a protective effect against liver and kidney deterioration. These
findings are congruent with those of Ghaffar et al. (Ghaffar et al., 2014). CuO-NPs’ protective
action may be linked to their function in reducing cellular leakage and loss of functional
membrane integrity in hepatocytes and kidneys.

In the tests against bacterial strains Lactobacillus acidophilus, Salmonella typhi and
Escherichia. coli, it is indicated in the CuO-NPs quantum dots’ in vitro antimicrobial activity
that the NPs synthesised from fruit extracts demonstrate greater antimicrobial activity
compared to the control (Zaman et al., 2020).

CuO-NPs synthesised from Catha edulis extract in different concentrations were used to
test its antimicrobial activities (Andualem, Sabir, Mohammed, Belay, & Gonfa, 2020).

Excellent antimicrobial activity was displayed by CuO-NPs against various strains of
bacteria (E. coli, Pseudomonas aeruginosa, Proteus vulgaris,E. faecalis,K. pneumonia, Shigella
flexneri and S. aureus) (Ahamed, Alhadlaq, Khan, Karuppiah, & Al-Dhabi, 2014).

CuO-NPs concentrated at 1-1000 mg/ml in TSB medium were applied to C. albicans,
Candida glabrata and Candida krusei cells, resulting in a fungal growth decrease (Amiri,
Etemadifar, Daneshkazemi, & Nateghi, 2017).

Against E. coli, CuO-NPs composite displayed the most significant Antimicrobial
behaviour at 1000 μg mL�1, the maximum concentration. Amoxicillin and CuO-NPs
demonstrated a synergistic outcome that restrained the growth of S. aureus and E. coli; this
effect was also observed when a good diffusion technique was employed (Khashan,
Sulaiman, & Abdulameer, 2016).

Excellent antimicrobial activity was demonstrated by CuO-NPs against different bacterial
strains, such as P. aeruginosa and E. coli. It was also detected that Cuo-NPs’ antimicrobial
activity is size dependent (Mohammed, Mubark, & Al-Haddad, 2018).

Orthodontic devices encourage the build-up of microbial plaque and increase the
chance of creating white spot lesions. A study was conducted to elucidate the antimicrobial
properties and bond strength of CuO-NPs. Based on that research, it was concluded
that incorporating CuO-NPs into the adhesives of the orthodontic devices strengthened
them with antimicrobial characteristics (Toodehzaeim, Zandi, Meshkani, &
Firouzabadi, 2018).
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Combining CuO-NPs and ZnO-NPs in an adhesive exhibited anti-MMP (matrix
metalloproteinases) and antimicrobial activities with no effect on the bond strength
(Guti�errez et al., 2019). Because fluorine is extensively used in enhancing dentin and enamel
remineralisation, Matsuda et al. earlier introduced new fluoride-containing nanocomposites
of ZnO-NPs and CuO-NPs, which they found to exhibit strong properties as an antimicrobial
(Matsuda et al., 2019).

An investigation was conducted about the properties arising from a combination of
adhesive dental materials with innovative zinc and copper nanocomposite that contains
fluoride. It was established that anti-MMP (matrix metalloproteinase) properties were
imparted when zinc and copper nanocomposites are added to the self-etch adhesive system.
That study proposed that this novel nanocomposite could handily bring a novel additional
uses to adhesive dental materials (Altankhishig et al., 2022). Figure 5 demonstrates the
mechanism of copper NPs’ antimicrobial activities in bacterial cells.

6. Dental application of copper oxide nanoparticles
With regards to dental applications, metal andmetallic oxides-based NPs have become a new
trend. In dentistry, metal NPs are employed due to their exclusive shape-dependent
characteristics, such as their different nanosizes and shape, large surface-area-to-volume
ratio as well as unique distribution. These characteristics enhance the antimicrobial activity,
bio-physio-chemical functionalisation as well as biocompatibility pertaining to the NPs.
Copper NPs are also employed for improving the chemical and physical characteristics of
different dental materials, like restorative cements, dental amalgam, obturation materials,

Figure 5.
Antimicrobial

mechanism of copper
nanoparticles
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adhesives, dental implants, endodontic-irrigation solutions, resins as well as orthodontic
brackets and archwires (Xu et al., 2022).

In the dental field, oral infections and denture-induced stomatitis can be addressed with
removable and fixed partial denture framework designs incorporated with copper NPs
(Grass, Rensing, Solioz, & microbiology, 2011). Earlier research studies have reported the
titanium–copper alloy to possess anti-aging and antimicrobial characteristics. The research
studies also showed that these antimicrobial characteristics could be adjusted by modifying
the alloy composition’s copper concentration (Koohkan, Hooshmand, Tahriri, & Mohebbi-
Kalhori, 2018). A study reported that copper-containing mesoporous bio-glass decreased the
microbial activity as well as biofilm formation due to release of copper ions (Astasov-
Frauenhoffer et al., 2019). Research reported a copper-bearing titanium alloy implant
possessing anti-infective characteristics that could be used against oral bacteria. The
research also showed that not only did titanium–copper alloy help in fighting against peri-
implant infections but also exhibited good biocompatibility (Liu et al., 2022). A study showed
that oral bacteria were inhibited by a titanium–copper alloy as well as a titanium-copper ion-
doped hydroxyapatite (Hameed, Ariffin, Luddin, Husein, & Research, 2018). With regards to
orthodontic appliances, adding copper NPs to a nickel–titanium alloy provides various
benefits. Loading stress was decreased when copper NPs were included in archwire, which
offered a relatively high unloading stress (Thamer & Barakat, 2019).

7. Development of nanocomposite based on CuO-NPs
Nanocomposites possess both special properties of nanomaterials along with polymer
advantages such as high conductivity, chemical resistance, elasticity and biocompatibility
(Gholamali, Yadollahi, & Medicine, 2021). The recent advancements in scientific areas, like
chemical engineering (Liu et al., 2021), biochemistry (Joseph et al., 2021) and physics (Noor
et al., 2021), entail the production of novel sensing techniques which combine lower power
usage and miniaturisation with extremely tactile sensitivity. Moreover, these materials
possess unique structures and optical properties that are not typically found in conventional
composites (Al-Hossainy, Abdelaal, & El Sayed, 2021). Nanocomposite synthesis is
considered as the primary step in building different electronic devices (Chen, Chen, Zhang,
& Fuels, 2021), drug delivery systems (Sathishkumar et al., 2021), biomedical and
immunosensing applications (Beyene, Moniruzzaman, Karthikeyan, & Min, 2021).

Due to the diversity in its applications, copper oxide NPs attract much attention. It has
different potential medical applications as antimicrobial, antioxidant, anticancer and drug
delivery properties. Physicochemical and biological approaches have been applied to
synthesise copper oxide NPs. The physicochemical methods are not only expensive but use
toxic chemicals with a possibly hazardous effect. Aside from being cost-effective and
environment-friendly, the biological approach is also stable and reliable; it also uses a
straightforward method and has low energy consumption.
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