Online Appendix

"On the Benefit of Developing Customers Profile Analysis to Implement Personalized Pricing in a Supply Chain"

A. Description about Model U.

The sequence of events under model U is as follows. First, the manufacturer decides on a wholesale price ω to maximize his profit Π_{M}. Then, the platform determines p to implement uniform pricing with the objective of maximizing her profit Π_{P}.

The manufacturer's problem is given by

$$
\begin{align*}
& \max _{\omega^{U}} \quad(\omega-c)(1-p), \tag{A1}\\
& \text { s.t. } \quad \omega \geq c .
\end{align*}
$$

The platform's problem is given by

$$
\begin{array}{ll}
\max _{p} & (p-\omega)(1-p), \tag{A2}\\
\text { s.t. } \quad & \omega \leq p \leq 1 .
\end{array}
$$

B. Proofs.

Proof of Lemma 1. We solve the uniform pricing model using backward induction. First, given ω, the platform decides a retail price to maximize her profit $\Pi_{P}=(p-\omega)(1-p)$. Due to $\frac{\partial^{2} \Pi_{P}}{\partial p^{2}}=$ $-2<0$, solving the first order condition $\frac{\partial \Pi_{p}}{\partial p}=1-2 p-\omega=0$ yields $p^{U}=\frac{1+\omega}{2}$. Then, plugging p^{U} into the profit of the manufacturer, we have $\Pi_{M}=(\omega-c)\left(1-p^{U}\right)=\frac{(1-\omega)(\omega-c)}{2}$. By solving the first order condition (i.e., $\frac{\partial \Pi_{M}}{\partial \omega}=\frac{1+c-2 \omega}{2}=0$) within $\omega \geq c$, we get $\omega^{U}=\frac{1+c}{2}$, so $p^{U}=\frac{3+c}{4}, \pi_{M}^{U}=\frac{(1-c)^{2}}{8}$ and $\pi_{P}^{U}=\frac{(1-c)^{2}}{16}$.

Proof of Lemma 2. Similarly, we solve the personalized pricing model using backward induction. Given ω, the platform decides a customer profile error to maximize her profit. By solving the first order condition (i.e., $\frac{\partial \Pi_{P}}{\partial \Delta}=-1+\Delta+\omega+2 \beta\left(\Delta_{0}-\Delta\right)=0$), we get $\Delta_{1}=\frac{1-\omega-2 \beta \Delta_{0}}{1-2 \beta}$. Due to $\frac{\partial^{2} \Pi_{P}}{\partial \Delta^{2}}=1-2 \beta$, we have the following two cases.
(i) When $0<\beta \leq \frac{1}{2}, \Pi_{P}$ is a convex function of Δ as $\frac{\partial^{2} \Pi_{P}}{\partial \Delta^{2}}>0$. Due to $c \leq \omega \leq 1-\Delta_{0}$, i.e., $0<\Delta_{0} \leq \Delta_{1}, \Pi_{P}$ decreases in $\Delta \in\left[0, \Delta_{0}\right]$, so $\Delta^{P}=0$.
(ii) When $\beta>\frac{1}{2}, \Pi_{P}$ is a concave function of Δ as $\frac{\partial^{2} \Pi_{P}}{\partial \Delta^{2}}<0$.
(ii-a) If $c \leq \omega \leq 1-2 \beta \Delta_{0}$, i.e., $\Delta_{1}<0<\Delta_{0}, \Pi_{P}$ decreases in $\Delta \in\left[0, \Delta_{0}\right]$, so $\Delta^{P}=0$.
(ii-b) If $1-2 \beta \Delta_{0}<\omega \leq 1-\Delta_{0}$, i.e., $0<\Delta_{1} \leq \Delta_{0}, \Pi_{P}$ first increases in $\Delta \in\left[0, \Delta_{1}\right]$ and then decreases in $\Delta \in\left(\Delta_{1}, \Delta_{0}\right]$, so $\Delta^{P}=\Delta_{1}$.

Then, the desired result follows as shown in Lemma 2.
Proof of Proposition 1. Plugging Δ^{P} in Lemma 2 into the profit of manufacturer.
(i) When $0<\beta \leq \frac{1}{2}$, then

$$
\begin{equation*}
\Pi_{M}=(\omega-c)(1-\omega), c \leq \omega \leq 1-\Delta_{0} \tag{A3}
\end{equation*}
$$

By solving the first order condition (i.e., $\frac{\partial \Pi_{M}}{\partial \omega}=1+c-2 \omega=0$), we get $\omega_{1}=\frac{1+c}{2}>c$. Therefore, we have the following cases.
(i-a) If $0 \leq c \leq 1-2 \Delta_{0}$, i.e., $c<\omega_{1} \leq 1-\Delta_{0}, \Pi_{M}$ first increases in $\omega \in\left[c, \omega_{1}\right]$ and then decreases in $\omega \in\left(\omega_{1}, 1-\Delta_{0}\right]$, so $\omega^{P}=\omega_{1}=\frac{1+c}{2}$ and $\Delta^{P}=0$.
(i-b) If $1-2 \Delta_{0}<c \leq 1-\Delta_{0}$, i.e., $\omega_{1}>1-\Delta_{0}, \Pi_{M}$ increases in $\omega \in\left[c, 1-\Delta_{0}\right]$, so $\omega^{P}=1-\Delta_{0}$ and $\Delta^{P}=0$.
(ii) When $\beta>\frac{1}{2}$, we have the following cases.
(ii-a) If $0 \leq c \leq 1-2 \beta \Delta_{0}$, then

$$
\Pi_{M}=\left\{\begin{array}{lr}
(\omega-c)(1-\omega), & c \leq \omega \leq 1-2 \beta \Delta_{0} \tag{A4}\\
(\omega-c)\left(1-\omega-\Delta_{1}\right), & 1-2 \beta \Delta_{0}<\omega \leq 1-\Delta_{0}
\end{array}\right.
$$

By solving the first order condition of the first line (i.e., $\frac{\partial \Pi_{M}}{\partial \omega}=1+c-2 \omega=0$), we get $\omega_{1}=$ $\frac{1+c}{2}>c$. By solving the first order condition of the second line (i.e., $\frac{\partial \Pi_{M}}{\partial \omega}=\frac{2 \beta\left(2 \omega-c-1+\Delta_{0}\right)}{1-2 \beta}=0$), we get $\omega_{2}=\frac{1+c-\Delta_{0}}{2} \leq 1-\Delta_{0}$. Then, comparing ω_{1}, ω_{2} and three endpoints, we have

1) if $0 \leq c \leq 1-4 \beta \Delta_{0}, \Pi_{M}$ first increases in $\omega \in\left[c, \omega_{1}\right]$ and then decreases in $\omega \in\left(\omega_{1}, 1-\Delta_{0}\right]$, so $\omega^{P}=\omega_{1}=\frac{1+c}{2}$ and $\Delta^{P}=0 ;$
2) if $1-4 \beta \Delta_{0}<c \leq 1-(4 \beta-1) \Delta_{0}, \Pi_{M}$ first increases in $\omega \in\left[c, 1-2 \beta \Delta_{0}\right]$ and then decreases in $\omega \in\left(1-2 \beta \Delta_{0}, 1-\Delta_{0}\right]$, so $\omega^{P}=1-2 \beta \Delta_{0}$ and $\Delta^{P}=0 ;$
3) if $1-(4 \beta-1) \Delta_{0}<c \leq 1-2 \beta \Delta_{0}, \Pi_{M}$ first increases in $\omega \in\left[c, \omega_{2}\right]$ and then decreases in $\omega \in\left(\omega_{2}, 1-\Delta_{0}\right]$, so $\omega^{P}=\omega_{2}=\frac{1+c-\Delta_{0}}{2}$ and $\Delta^{P}=\Delta_{1}=\frac{1-c+(1-4 \beta) \Delta_{0}}{2(1-2 \beta)}$.
(ii-b) If $1-2 \beta \Delta_{0} \leq c \leq 1-\Delta_{0}$, then

$$
\begin{equation*}
\Pi_{M}=(\omega-c)\left(1-\omega-\Delta_{1}\right), c \leq \omega \leq 1-\Delta_{0} \tag{A5}
\end{equation*}
$$

By solving the first order condition (i.e., $\frac{\partial \Pi_{M}}{\partial \omega}=\frac{2 \beta\left(2 \omega-c-1+\Delta_{0}\right)}{1-2 \beta}=0$), we get $\omega_{2}=\frac{1+c-\Delta_{0}}{2}$ and
$c \leq \omega_{2} \leq 1-\Delta_{0} . \Pi_{M}$ first increases in $\omega \in\left[c, \omega_{2}\right]$ and then decreases in $\omega \in\left(\omega_{2}, 1-\Delta_{0}\right]$, so $\omega^{P}=$ $\omega_{2}=\frac{1+c-\Delta_{0}}{2}$ and $\Delta^{P}=\Delta_{1}=\frac{1-c+(1-4 \beta) \Delta_{0}}{2(1-2 \beta)}$.

We define the following sets according to the analysis of the above cases.

$$
\begin{aligned}
I & =\left\{0<\beta \leq \frac{1}{2}, 0 \leq c \leq 1-2 \Delta_{0}\right\} \cup\left\{\beta>\frac{1}{2}, 0 \leq c \leq 1-4 \beta \Delta_{0}\right\}, \\
I I & =\left\{0<\beta \leq \frac{1}{2}, 1-2 \Delta_{0}<c \leq 1-\Delta_{0}\right\}, \\
I I I & =\left\{\beta>\frac{1}{2}, 1-4 \beta \Delta_{0}<c \leq 1-(4 \beta-1) \Delta_{0}\right\}, \\
I V & =\left\{\beta>\frac{1}{2}, 1-(4 \beta-1) \Delta_{0}<c \leq 1-\Delta_{0}\right\} .
\end{aligned}
$$

Then the desired result follows as shown in Proposition 1.
Proof of Lemma 3. First, we establish the monotonicity of the equilibrium wholesale price and profile error with respect to c and β case by case according to the results in Proposition 1.
(i) When $(\beta, c) \in I$, then $\left(\omega^{P}, \Delta^{P}\right)=\left(\frac{1+c}{2}, 0\right)$. It is easy to check that ω^{P} increases with c while Δ^{P} is irrelevant with c; moreover, both ω^{P} and Δ^{P} are irrelevant with β.
(ii) When $(\beta, c) \in I I$, then $\left(\omega^{P}, \Delta^{P}\right)=\left(1-\Delta_{0}, 0\right)$. It is easy to check that both ω^{P} and Δ^{P} are irrelevant with c and β.
(iii) When $(\beta, c) \in I I I$, then $\left(\omega^{P}, \Delta^{P}\right)=\left(1-2 \beta \Delta_{0}, 0\right)$. It is easy to check that both ω^{P} and Δ^{P} are irrelevant with c; moreover, ω^{P} decreases with β while Δ^{P} is irrelevant with β.
(iv) When $(\beta, c) \in I V$, then $\left(\omega^{P}, \Delta^{P}\right)=\left(\frac{1+c-\Delta_{0}}{2}, \frac{1-c+(1-4 \beta) \Delta_{0}}{2(1-2 \beta)}\right)$. It is easy to check that both ω^{P} and Δ^{P} increases with c; moreover, ω^{P} is irrelevant with β, while Δ^{P} increases with β as $\frac{\partial \Delta^{P}}{\partial \beta}=\frac{4\left(1-c-\Delta_{0}\right)}{4(1-2 \beta)^{2}}>0$.

Next, we analyze the impact of c on ω^{P} and Δ^{P}.
(i) When $0<\beta \leq \frac{1}{2}$, the path of the equilibrium solutions is $I \rightarrow I I$. Therefore, ω^{P} first increases and then keeps irrelevant with c, but Δ^{P} keeps irrelevant with c.
(ii) When $\frac{1}{2}<\beta \leq \frac{1}{4 \Delta_{0}}$, the path of the equilibrium solutions is $I \rightarrow I I I \rightarrow I V$. Therefore, ω^{P} first increases, then keeps irrelevant and finally increases with c, but Δ^{P} first keeps irrelevant and then increases with c.
(iii) When $\frac{1}{4 \Delta_{0}}<\beta \leq \frac{1+\Delta_{0}}{4 \Delta_{0}}$, the path of the equilibrium solutions is $I I I \rightarrow I V$. Therefore, ω^{P} first keeps irrelevant and then increases with c, but Δ^{P} first keeps irrelevant and then increases with c.
(iv) When $\beta>\frac{1+\Delta_{0}}{4 \Delta_{0}}$, the path of the equilibrium solutions is $I V$. Therefore, both ω^{P} and Δ^{P} increases with c.

In summary, $\frac{\partial \omega_{P}}{\partial c} \geq 0$ and $\frac{\partial \Delta_{P}}{\partial c} \geq 0$ always exists.
Finally, we analyze the impact of β on ω^{P} and Δ^{P}.
(i) When $0<c \leq 1-2 \Delta_{0}$, the path of the equilibrium solutions is $I \rightarrow I I I \rightarrow I V$. Therefore, ω^{P} first keeps irrelevant, then decreases and finally keeps irrelevant with β, but Δ^{P} first keeps irrelevant and then increases with β.
(ii) When $1-2 \Delta_{0}<c \leq 1-\Delta_{0}$, the path of the equilibrium solutions is $I I \rightarrow I I I \rightarrow I V$. Therefore, ω^{P} first keeps irrelevant, then decreases and finally keeps irrelevant with β, but Δ^{P} first keeps irrelevant and then increases with β.

In summary, $\frac{\partial \omega_{P}}{\partial \beta} \leq 0$ and $\frac{\partial \Delta_{P}}{\partial \beta} \geq 0$ always exists.
Proof of Proposition 2. Similarly, we establish the monotonicity of the equilibrium demand and profits with respect to c and β case by case according to the results in Proposition 1.
(i) When $(\beta, c) \in I$, then $D^{P}=\frac{1-c}{2}, \Pi_{M}^{P}=\frac{(1-c)^{2}}{4}$ and $\Pi_{P}^{P}=\frac{(1-c)^{2}}{8}-\beta \Delta_{0}^{2}$. It is easy to check that D^{P}, Π_{M}^{P} and Π_{P}^{P} decrease with c; moreover, D^{P} and Π_{M}^{P} are irrelevant with β while Π_{P}^{P} decrease with β.
(ii) When $(\beta, c) \in I I$, then $D^{P}=\Delta_{0}, \Pi_{M}^{P}=\left(1-c-\Delta_{0}\right) \Delta_{0}$ and $\Pi_{P}^{P}=\frac{(1-2 \beta) \Delta_{0}^{2}}{2}$. It is easy to check that Π_{M}^{P} decreases with c while D^{P} and Π_{P}^{P} are irrelevant with c; moreover, D^{P} and Π_{M}^{P} are irrelevant with β and Π_{P}^{P} decreases with β.
(iii) When $(\beta, c) \in I I I$, then $D^{P}=2 \beta \Delta_{0}, \Pi_{M}^{P}=\left(1-c-2 \beta \Delta_{0}\right) 2 \beta \Delta_{0}$ and $\Pi_{P}^{P}=\beta \Delta_{0}^{2}$. It is easy to check that Π_{M}^{P} decrease with c while D^{P} and Π_{P}^{P} are irrelevant with c; moreover, Π_{M}^{P} decreases with β as $\frac{\partial \Pi_{M}^{P}}{\partial \beta}=2 \Delta_{0}\left(1-c-4 \beta \Delta_{0}\right)<0, D^{P}$ and Π_{P}^{P} increase with β.
(iv) When $(\beta, c) \in I V$, then $D^{P}=\frac{\beta\left(1-c-\Delta_{0}\right)}{2 \beta-1}, \Pi_{M}^{P}=\frac{\beta\left(1-c-\Delta_{0}\right)^{2}}{2(2 \beta-1)}$ and $\Pi_{P}^{P}=\frac{\beta\left(1-c-\Delta_{0}\right)^{2}}{4(2 \beta-1)}$.

It is easy to check that D^{P}, Π_{M}^{P} and Π_{P}^{P} decrease with $c ; D^{P}, \Pi_{M}^{P}$ and Π_{P}^{P} decrease with β.
Next, we analyze the impact of c on Π_{M}^{P} and Π_{P}^{P}.
(i) When $0<\beta \leq \frac{1}{2}$, the path of the equilibrium solutions is $I \rightarrow I I$. Therefore, Π_{M}^{P} decreases with c, but D^{P} and Π_{P}^{P} first decrease and then keep irrelevant with c.
(ii) When $\frac{1}{2}<\beta \leq \frac{1}{4 \Delta_{0}}$, the path of the equilibrium solutions is $I \rightarrow I I I \rightarrow I V$. Therefore, Π_{M}^{P} decreases with c, but D^{P} and Π_{P}^{P} first decrease, then keep irrelevant, then decrease with c.
(iii) When $\frac{1}{4 \Delta_{0}}<\beta \leq \frac{1+\Delta_{0}}{4 \Delta_{0}}$, the path of the equilibrium solutions is $I I I \rightarrow I V$. Therefore, Π_{M}^{P} decreases with c, but D^{P} and Π_{P}^{P} first keep irrelevant and then decrease with c.
(iv) When $\beta>\frac{1+\Delta_{0}}{4 \Delta_{0}}$, the path of the equilibrium solutions is $I V$. Therefore, D^{P}, Π_{M}^{P} and Π_{P}^{P} decrease with c.

In summary, $\frac{\partial \Pi_{M}^{P}}{\partial c}<0, \frac{\partial \Pi_{P}^{P}}{\partial c} \leq 0$ and $\frac{\partial D^{P}}{\partial c} \leq 0$.
Finally, we analyze the impact of β on D^{P}, Π_{M}^{P} and Π_{P}^{P}.
(i) When $0<c \leq 1-2 \Delta_{0}$, the path of the equilibrium solutions is $I \rightarrow I I I \rightarrow I V$. Therefore, Π_{M}^{P} first keeps irrelevant and then decreases with β, Π_{P}^{P} first decreases, then increases and finally decreases with β, D^{P} first keeps irrelevant, then increases and finally decreases with β.
(ii) When $1-2 \Delta_{0}<c \leq 1-\Delta_{0}$, the path of the equilibrium solutions is $I I \rightarrow I I I \rightarrow I V$. Therefore, Π_{M}^{P} first keeps irrelevant and then decreases with β, Π_{P}^{P} first decreases, then increases and finally decreases with β, D^{P} first keeps irrelevant, then increases and finally decreases with β.

Proof of Proposition 3. Recall that $\pi_{M}^{U}=\frac{(1-c)^{2}}{8}$ and $\pi_{P}^{U}=\frac{(1-c)^{2}}{16}$. Then we compare the profits case by case according to the results in Proposition 1.
(i) When $(\beta, c) \in I$, then $\Pi_{M}^{P}=\frac{(1-c)^{2}}{4}$ and $\Pi_{P}^{P}=\frac{(1-c)^{2}}{8}-\beta \Delta_{0}^{2} . \pi_{M}^{U}-\Pi_{M}^{P}=-\frac{(1-c)^{2}}{8}<0$ and $\pi_{P}^{U}-\Pi_{P}^{P}=-\frac{(1-c)^{2}}{16}+\beta \Delta_{0}^{2}$. Define $f_{1}(x)=-\frac{x^{2}}{16}+\beta \Delta_{0}^{2}$, where $x=1-c \geq \max \left\{2 \Delta_{0}, 4 \beta \Delta_{0}\right\}$.
(i-a) If $0<\beta \leq \frac{1}{4}$, then $f_{1}(x)<0$ when $x \in\left[2 \Delta_{0},+\infty\right)$.
(i-b) If $\frac{1}{4}<\beta \leq \frac{1}{2}$, then $f_{1}(x)>0$ when $x \in\left[2 \Delta_{0}, 4 \sqrt{\beta} \Delta_{0}\right)$ and $f_{1}(x)<0$ when $x \in\left(4 \sqrt{\beta} \Delta_{0},+\infty\right)$.
(i-c) If $\frac{1}{2}<\beta \leq 1$, then $f_{1}(x)>0$ when $x \in\left[4 \beta \Delta_{0}, 4 \sqrt{\beta} \Delta_{0}\right)$ and $f_{1}(x)<0$ when $x \in\left(4 \sqrt{\beta} \Delta_{0},+\infty\right)$.
(i-d) If $\beta>1$, then $f_{1}(x)<0$ when $x \in\left[4 \beta \Delta_{0},+\infty\right)$.
(ii) When $(\beta, c) \in I I$, then $\Pi_{M}^{P}=\left(1-c-\Delta_{0}\right) \Delta_{0}$ and $\Pi_{P}^{P}=\frac{(1-2 \beta) \Delta_{0}^{2}}{2} . \pi_{M}^{U}-\Pi_{M}^{P}=\frac{(1-c)^{2}}{8}-(1-$ c) $\Delta_{0}+\Delta_{0}^{2}$. Define $f_{2}(x)=\frac{x^{2}}{8}-x \Delta_{0}+\Delta_{0}^{2}$, where $\Delta_{0} \leq x<2 \Delta_{0}$. Therefore, $f_{2}(x)>0$ when $x \in$ $\left[\Delta_{0},(4-2 \sqrt{2}) \Delta_{0}\right.$] and $f_{2}(x)<0$ when $x \in\left((4-2 \sqrt{2}) \Delta_{0}, 2 \Delta_{0}\right)$.

Similarly, $\pi_{P}^{U}-\Pi_{P}^{P}=f_{3}(x)=\frac{x^{2}}{16}-\frac{(1-2 \beta) \Delta_{0}^{2}}{2}$, where $\Delta_{0} \leq x<2 \Delta_{0}$.
(ii-a) If $0<\beta \leq \frac{1}{4}$, then $f_{3}(x)<0$ when $x \in\left[\Delta_{0}, 2 \Delta_{0}\right)$.
(ii-b) If $\frac{1}{4}<\beta \leq \frac{7}{16}$, then $f_{3}(x)<0$ when $x \in\left[\Delta_{0}, 2 \sqrt{2-4 \beta} \Delta_{0}\right]$ and $f_{3}(x)>0$ when $x \in$ $\left(2 \sqrt{2-4 \beta} \Delta_{0},+\infty\right)$.
(ii-c) If $\frac{7}{16}<\beta \leq \frac{1}{2}$, then $f_{3}(x)>0$ when $x \in\left[\Delta_{0}, 2 \Delta_{0}\right)$.
(iii) When $(\beta, c) \in I I I$, then $\Pi_{M}^{P}=\left(1-c-2 \beta \Delta_{0}\right) 2 \beta \Delta_{0}$ and $\Pi_{P}^{P}=\beta \Delta_{0}^{2} \cdot \pi_{M}^{U}-\Pi_{M}^{P}=f_{4}(x)=$ $\frac{x^{2}}{8}-2 \beta \Delta_{0} x+4 \beta^{2} \Delta_{0}^{2}$, where $(4 \beta-1) \Delta_{0} \leq x<4 \beta \Delta_{0}$.
(iii-a) If $\frac{1}{2}<\beta \leq \frac{1+\sqrt{2}}{4}$, then $f_{4}(x)>0$ when $x \in\left[(4 \beta-1) \Delta_{0},(8-4 \sqrt{2}) \beta \Delta_{0}\right)$ and $f_{4}(x)<0$ when $x \in\left((8-4 \sqrt{2}) \beta \Delta_{0}, 4 \beta \Delta_{0}\right)$.
(iii-b) If $\beta>\frac{1+\sqrt{2}}{4}$, then $f_{4}(x)<0$ when $x \in\left[(4 \beta-1) \Delta_{0}, 4 \beta \Delta_{0}\right)$.
Similarly, $\pi_{P}^{U}-\Pi_{P}^{P}=f_{5}(x)=\frac{x^{2}}{16}-\beta \Delta_{0}^{2}$, where $(4 \beta-1) \Delta_{0} \leq x<4 \beta \Delta_{0}$.
(iii-a) If $\frac{1}{2}<\beta \leq 1$, then $f_{5}(x)<0$ when $x \in\left[(4 \beta-1) \Delta_{0}, 4 \beta \Delta_{0}\right)$.
(iii-b) If $1<\beta \leq \frac{3+2 \sqrt{2}}{4}$, then $f_{5}(x)<0$ when $x \in\left[(4 \beta-1) \Delta_{0}, 4 \sqrt{\beta} \Delta_{0}\right)$ and $f_{5}(x)>0$ when $x \in$ $\left(4 \sqrt{\beta} \Delta_{0}, 4 \beta \Delta_{0}\right)$.
(iii-c) If $\beta>\frac{3+2 \sqrt{2}}{4}$, then $f_{5}(x)>0$ when $x \in\left[(4 \beta-1) \Delta_{0}, 4 \beta \Delta_{0}\right)$.
(iv) When $(\beta, c) \in I V$, then $\Pi_{M}^{P}=\frac{\beta\left(1-c-\Delta_{0}\right)^{2}}{2(2 \beta-1)}$ and $\Pi_{P}^{P}=\frac{\beta\left(1-c-\Delta_{0}\right)^{2}}{4(2 \beta-1)} . \pi_{M}^{U}-\Pi_{M}^{P}=f_{6}(x)=\frac{x^{2}}{8}-$ $\frac{\beta\left(x-\Delta_{0}\right)^{2}}{2(2 \beta-1)}$, where $\Delta_{0} \leq x<(4 \beta-1) \Delta_{0}$.
(iv-a) If $\frac{1}{2}<\beta \leq \frac{1+\sqrt{2}}{4}$, then $f_{6}(x)>0$ when $x \in\left[\Delta_{0},(4 \beta-1) \Delta_{0}\right)$.
(iv-b) If $\beta>\bar{\beta}$, then $f_{6}(x)>0$ when $x \in\left[\Delta_{0}, \frac{A}{A-1} \Delta_{0}\right)$ and $f_{6}(x)<0$ when $x \in\left(\frac{A}{A-1} \Delta_{0},(4 \beta-1) \Delta_{0}\right)$, where $A=\sqrt{\frac{4 \beta}{2 \beta-1}}$.

Due to $\pi_{P}^{U}-\Pi_{P}^{P}=\frac{1}{2} f_{6}(x)$, the analysis is similar and we omit the detail.
In summary, as far as the comparison of π_{M}^{U} and Π_{M}^{P}, we have $\pi_{M}^{P} \geq \pi_{M}^{U}$ if $0<c \leq \min \{1-(4-$ $\left.2 \sqrt{2}) \Delta_{0}, 1-(8-4 \sqrt{2}) \beta \Delta_{0}, 1-\frac{A \Delta_{0}}{A-1}\right)$ and $\pi_{M}^{P}<\pi_{M}^{U}$ otherwise.

Regarding the comparison of π_{P}^{U} and Π_{P}^{P}, we can use the following Figure A to show the results.

Figure A The comparison of platform's profits

Source(s): Figure created by authors

We define the following sets according to the analysis of the above cases.

$$
\begin{aligned}
A= & \left\{1-(4-2 \sqrt{2}) \Delta_{0}<c \leq \min \left\{1-2 \sqrt{2-4 \beta} \Delta_{0}, 1-\Delta_{0}\right\} \cup \max \left\{1-\frac{A \Delta_{0}}{A-1}, 1-(8-4 \sqrt{2}) \beta \Delta_{0}\right\}<c \leq 1-\Delta_{0}\right\}, \\
B= & \left\{0 \leq c \leq \min \left\{1-2 \Delta_{0}, 1-4 \sqrt{\beta} \Delta_{0}, 1-4 \beta \Delta_{0}\right\}\right\} \cup\left\{\max \left\{1-2 \Delta_{0}, 1-2 \sqrt{2-4 \beta} \Delta_{0}\right\}<c \leq 1-(4-2 \sqrt{2}) \Delta_{0}\right\} \\
& \cup\left\{\max \left\{1-4 \beta \Delta_{0}, 1-4 \sqrt{\beta} \Delta_{0}\right\} \leq c<\min \left\{1-(8-4 \sqrt{2}) \beta \Delta_{0}, 1-\frac{A \Delta_{0}}{A-1}\right\}\right\}, \\
C= & \left\{\max \left\{1-(4-2 \sqrt{2}) \Delta_{0}, 1-2 \sqrt{2-4 \beta} \Delta_{0}\right\} \leq c \leq 1-\Delta_{0}\right\} \cup\left\{1-(8-4 \sqrt{2}) \beta \Delta_{0} \leq c<1-(4 \beta-1) \Delta_{0}\right\}, \\
D= & \left\{1-4 \sqrt{\beta} \Delta_{0} \leq c<\min \left\{1-2 \sqrt{2-4 \beta} \Delta_{0}, 1-(4-2 \sqrt{2}) \Delta_{0}\right\}\right\} \cup\left\{1-4 \sqrt{\beta} \Delta_{0} \leq c<1-4 \beta \Delta_{0}\right\} \\
& \cup\left\{0 \leq c<\min \left\{1-4 \sqrt{\beta} \Delta_{0}, 1-(4 \beta-1) \Delta_{0}\right\}\right\} .
\end{aligned}
$$

Then, the final results are shown in Proposition 3.

