Online Appendix
“On the Benefit of Developing Customers Profile Analysis to Implement

Personalized Pricing in a Supply Chain”

A. Description about Model U.
The sequence of events under model U is as follows. First, the manufacturer decides on a wholesale
price w to maximize his profit II,,;. Then, the platform determines p to implement uniform pricing
with the objective of maximizing her profit Ilp.
The manufacturer’s problem is given by
max (w—c)(1—p),

wU

(A1)

st. w>ec.

The platform’s problem is given by

! (A2)

B. Proofs.

Proof of Lemma 1. We solve the uniform pricing model using backward induction. First, given
w, the platform decides a retail price to maximize her profit IIp = (p — w)(1 — p). Due to 8;)“5 =
—2 < 0, solving the first order condition agpp =1-2p—w=0 yields p = 122, Then, plugging p”
into the profit of the manufacturer, we have II; = (w—¢)(1—pY) = (17“’)2& By solving the first
order condition (i.e., (S‘(’?TM = 120 — () within w > ¢, we get w¥ = 1£¢ s0 p¥ =3¢ 7l = %
and 7% = “;?2. 0O

Proof of Lemma 2. Similarly, we solve the personalized pricing model using backward induc-
tion. Given w, the platform decides a customer profile error to maximize her profit. By solving the

first order condition (i.e., ?—Ap =—1+A4w+28(A;—A)=0), we get Ay = 71_“1’:;?%. Due to
88225 =1— 20, we have the following two cases.

o’ p
A2

(i) When 0 < 8 < 3, IIp is a convex function of A as >0. Due to c<w<1-— Ay, ie.,

0< Ay <Aj, Ip decreases in A € [0, Aq], so AP =0.

%I p
A2

(ii-a) If c<w <1—28Ay, ie., A <0< Ay, IIp decreases in A € [0,A¢], so AP =0.

(ii) When 8> 1, IIp is a concave function of A as <0.
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(ii-b) If 1 —28Ap <w <1 — A, ie., 0 <A} <Ay, IIp first increases in A € [0,A;] and then
decreases in A € (A1, Ag], so AP =A;.

Then, the desired result follows as shown in Lemma 2. O

Proof of Proposition 1. Plugging Af in Lemma 2 into the profit of manufacturer.

(i) When 0 < 8 < 1, then
My=w-c(l-w),c<w<1—-A, (A3)

By solving the first order condition (i.e., 8?;” =1+c—2w=0), we get w; = 1;”: > c¢. Therefore,

we have the following cases.

(ira) F0<c<1—-2Ag, ie., c<w; <1— Ay, I, first increases in w € [¢,w;] and then decreases
inwe (w,1—Ag], s0ow’”=w; =1 and A”=0.

(i-b) If 1 = 2Ag < e <1 — Ay, ie., w; >1— Ay, 1T, increases in w € [¢,1 — Ay , so wF =1-A,
and AP =0.

(ii) When 3 > £, we have the following cases.

(ii-a) If 0 <e<1—2BAg, then

(w—0)(1—-w), c<w<1-28A
(w—ec)(l—w—A41), 1-2Ac<w<1-Ag

By solving the first order condition of the first line (i.e., 825” =1+c—2w=0), we get w; =

¢ > ¢. By solving the first order condition of the second line (i.e., Bgff = 2[3(2‘“1__02_/31+A0) =0), we

get wy = w <1-—Ag. Then, comparing w;, w, and three endpoints, we have

1)if 0 <e<1—4pA,, I, first increases in w € [¢,w;] and then decreases in w € (wy,1—Ag] , so
wP =w; =€ and AP =0;

2)if 1 —48Ag<c<1—(48—1)Ag, IT), first increases in w € [¢,1 —28A,] and then decreases in
we (1—-28A0,1—24A],s0ow?=1-28Ay and AF =0;

3)if 1 — (48 —1)Ag <c<1—2BA,, II) first increases in w € [c,w,] and then decreases in
w € (W, 1—Ag] , s0 wP:wgzw and AP = A, = 1=ct1=45)40

2(1-28)
(ii-b) If 1 —2BAp < c<1— Ay, then
My=w-c(l-w—-A7A1),c<w<1-Ag (Ab)

By solving the first order condition (i.e., ag‘i” = 25(2w;f;ﬂ1+A°) =0), we get wy = % and




c<wy <1—Ag. I, first increases in w € [c,ws] and then decreases in w € (wy,1 — Agl, so w? =

Ie—A I—ct(1-48)A
Wo = 7+C2 0 and AP =A, = 76;((1_255)) 0

We define the following sets according to the analysis of the above cases.

I={0<f<3,0<c<1-2A0 U{B>3,0<c<1—48A},
IT={0<f<3$,1-200<c<1—Ag},

IV={B>%1-(48-1)A¢<c<1-Ap}

Then the desired result follows as shown in Proposition 1. [

Proof of Lemma 3. First, we establish the monotonicity of the equilibrium wholesale price and
profile error with respect to ¢ and 3 case by case according to the results in Proposition 1.

(i) When (8,¢) € I, then (w?, AP) = (1£<,0). It is easy to check that w” increases with ¢ while
AP is irrelevant with ¢; moreover, both w” and A” are irrelevant with j.

(ii) When (83,c) € I1, then (w?, AP) = (1— Ay,0). It is easy to check that both w” and A” are
irrelevant with ¢ and .

(iii) When (8,¢) € I1I, then (w”,AP) =(1—-28A,,0). It is easy to check that both w? and AP
are irrelevant with ¢; moreover, w? decreases with 8 while A? is irrelevant with 3.

(iv) When (83,c¢) € IV, then (w”,A") = (HCZ_AO? 1_0;((11__2?))%). It is easy to check that both

w? and AT increases with ¢; moreover, w? is irrelevant with 3, while A increases with 3 as

AT 4(1—c—Ap)
a8 T 4(1-2p)2

Next, we analyze the impact of ¢ on w? and AF.

> 0.

() When 0 < 8 < 3, the path of the equilibrium solutions is  — I1. Therefore, w” first increases
and then keeps irrelevant with ¢, but Af keeps irrelevant with c.
(ii) When 1 < 8 < ﬁ, the path of the equilibrium solutions is I — I11 — IV. Therefore, w’

first increases, then keeps irrelevant and finally increases with ¢, but AF first keeps irrelevant and

then increases with c.

(iii) When ﬁ <p< IIAAO 0 the path of the equilibrium solutions is 111 — I'V. Therefore, w”

first keeps irrelevant and then increases with ¢, but A? first keeps irrelevant and then increases

with c.

(iv) When 5 > 1:AA(‘)0, the path of the equilibrium solutions is IV. Therefore, both w? and A

increases with c.



In summary, ag—f >0 and a?—f > 0 always exists.

Finally, we analyze the impact of 8 on w!” and A”.

(i) When 0 < ¢ <1 —2A,, the path of the equilibrium solutions is I — I1I — [V. Therefore,
w? first keeps irrelevant, then decreases and finally keeps irrelevant with 3, but AF first keeps
irrelevant and then increases with j3.

(i) When 1 —2Ag < ¢ <1— Ay, the path of the equilibrium solutions is I — [T — IV. There-
fore, w® first keeps irrelevant, then decreases and finally keeps irrelevant with 3, but A” first keeps
irrelevant and then increases with 5.

In summary, 8“”’ <0 and d P >0 always exists. [

Proof of Proposztwn 2. Slmllarly, we establish the monotonicity of the equilibrium demand and
profits with respect to ¢ and 8 case by case according to the results in Proposition 1.

(i) When (8,¢) € I, then DY = 1< TIF, = (1_40)2 and I15 = % — BA2. Tt is easy to check that

DF TI%, and TI5 decrease with ¢; moreover, D¥ and 1%, are irrelevant with 3 while 15 decrease
with 5.

(i) When (8,¢) € IT, then DP = Ag, TIE, = (1 — ¢ — Ag)Ay and T15 = 022928 [t s easy to
check that 1§, decreases with ¢ while D¥ and II% are irrelevant with ¢; moreover, D and 1%, are
irrelevant with 8 and IT5 decreases with 3.

(iii) When (8,¢) € IT1, then DF =28A,, I}, = (1 —c—28A0)28A, and 115 = BA2 . Tt is easy
to check that 114, decrease with ¢ while D and II% are irrelevant with ¢; moreover, ITF, decreases
with 3 as 8HM =2A¢(1 —c—4BA,) <0, D¥ and II% increase with .

(iv) When (B.¢) €IV, then DP = 20ze=b0) [, — PUZe=B0)® g q1f = PU-ccfo)”,

It is easy to check that D¥ TI%; and IT5 decrease with ¢; DY II¥, and 1% decrease with .

Next, we analyze the impact of ¢ on II%, and IIL.
(i) When 0 < 8 < 1, the path of the equilibrium solutions is I — II. Therefore, II}; decreases
with ¢, but D and II first decrease and then keep irrelevant with c.

(ii) When § <3< the path of the equilibrium solutions is I — ITT — IV. Therefore, 114,

4A’

decreases with ¢, but D and II% first decrease, then keep irrelevant, then decrease with c.

(iii) When K <p< IZAAO the path of the equilibrium solutions is I11 — I'V. Therefore, 1,

decreases with ¢, but D and II% first keep irrelevant and then decrease with c.

(iv) When S > 1+A0 , the path of the equilibrium solutions is IV. Therefore, D, TI¥, and 115

decrease with c.
In summary, M < (), aHP <0 and BD <0.

Finally, we analyze the impact of 3 on D? 11}, and TI5.



(i) When 0 < ¢ <1—2Ag, the path of the equilibrium solutions is I — II1 — IV. Therefore,
ITF, first keeps irrelevant and then decreases with 3, IT5 first decreases,then increases and finally
decreases with 3, DF first keeps irrelevant, then increases and finally decreases with §3.

(ii) When 1 —2Aq < ¢ <1— Ay, the path of the equilibrium solutions is /I — 11 — IV. There-
fore, IT¥, first keeps irrelevant and then decreases with 3, IIL first decreases, then increases and
finally decreases with 3, D¥ first keeps irrelevant, then increases and finally decreases with 3. [

Proof of Proposition 3. Recall that 7{, = % and 7Y = (1 C) . Then we compare the profits

case by case according to the results in Proposition 1.
(i) When (8,¢) € I, then TIE, = U=9% and TIE = U= _ gA2 7U — TP = —0=9° < and
— 15 = —% + BAZ. Define f(z) = —% + BAZ, where x =1 — ¢ > max{2A,,48A}.
(i-a) If 0 < < 1, then fi(z) <0 when z € [2A, +00).
(i-b) If + < B < 1, then fi(x) >0 when z € [2A,4/BAy) and fi(x) <0 when z € (44/BA, +00).
(i-c) If £ < 8 <1, then fi(x) >0 when z € [48A,4v/BA¢) and fi(z) <0 when z € (4y/BAq, +00).
(i-d) If B> 1, then fi(x) <0 when z € [45A¢, +00).

i)

When (3,¢) € I1, then II%, = (1 — ¢ — Ag)A and ngw. w%—ﬂﬁ:%—(l—

(i
c)Ag + A2. Define fo(z) = % — xAg + A3, where Ay <z < 2A,. Therefore, fy(z) >0 when x €
[Ag, (4 —2v2)A¢] and fo(z) <0 when x € ((4 —2v/2)Ag, 24).
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Similarly, 7§ —IIf = fs(z) = % — %, where Ay <z < 2A,.

(ii-a) If 0 < B < %, then f3(x) <0 when x € [Ag, 2A).

(ii-b) If + < B < &, then f3(z) <0 when x € [Ag,2y/2—48A,] and f3(z) > 0 when z €
(2¢/2 —4BA¢, +0).

(ii-c) If = < B < 3, then f3(x) >0 when x € [Ag,24,).

(i) When (8,¢) € I11, then TI¥, = (1 — ¢ — 28A¢)2B8A, and IIE = BA2 . 7V, — 1Y, = f,(z) =
2 28Agx + 482A2, where (48 — 1)A, <z < 45A,.

(iii-a) If £ <8< 1%‘/5, then f4(z) >0 when = € [(48 — 1)Ay, (8 — 4v/2)BA) and fy(z) < 0 when

€ ((8 —4v/2) B¢, 4BA).

(ifi-b) If 8> 1£2 then f4(a¢) <0 when z € [(48 — 1)Ag,48A,).

Similarly, 74 — IIE = f5(z) = & — BA2, where (48— 1)Ay < z < 481,

(iii-a) If 1 < B< 1, then f5($) <0 when x € [(48 — 1)Ag, 48A,).

(ifi-b) If 1 < B < 2¥22 then f5(z) <0 when x € [(48 — 1)Ag,4y/BA¢) and fs(z) >0 when x €
(4/BAo, 4B,).

(ifi-c) If B> 3#2Y2 then fy(z) >0 when z € [(48 — 1)Ag,48A,).




(iv) When (8,¢) € IV, then IIf, = BlcB0)® o4 L = Blc—do)® ¥, — 1L = fs(x) = 2 _

2(28-1) 4(28-1) s
z—A
B0l where Ay <@ < (48— 1)A,.

(iv-a) If L < B < Y2 then fs(z) >0 when x € [Ag, (48 — 1)A).
(iv-b) If 8> B3, then fs(z) >0 when z € [Ag, z2:Ap) and fo(x) < 0 when z € ({2 A, (48—1)Ay),

where A = ;’B .

Due to n —II§ = £ fe(x), the analysis is similar and we omit the detail.

In summary, as far as the comparison of 7§, and IT;, we have 7, > ¥, if 0 < ¢ <min{l — (4 —
2v/2)Ag, 1 — (8 — 4v/2) BA,, AAO) and 71, < 7, otherwise.

Regarding the comparison of 7% and 15, we can use the following Figure A to show the results.

b >l

1-2a, |

n
S
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s\
=

Figure A The comparison of platform’s profits

Source(s): Figure created by authors

We define the following sets according to the analysis of the above cases.

A={1-(4-2V2)Ag <c<min{l —2y/2 45,1~ Ay} Umax{l — 422 1 — (8 —4V2)8A¢} < c <1 - Ay},

B={0<c<min{l —2A¢,1—4v/BA¢,1 =487} } U{max{l —2A,,1—2/2 —48A,} <c<1—(4—2V2)Ay}
U {max{1 —48A,,1 —4y/BA¢} <c<min{l — (8 — 4v/2)BA, 1 — 4221},

C ={max{1 — (4 —2v2)Ay,1—2\/2— 4870} <c<1—-AJU{l - (8 —4V2)BA; <c<1— (43 —1)A,},

D ={1—4/BA; <c<min{l —2\/2—48A,,1— (4—2vV2)As}}U{1 —4y/BA; < c<1—48A,}
U{0<ec<min{l —4y/BAg,1— (48 —1)Ag}}.

Then, the final results are shown in Proposition 3.
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