Online Appendix

"On the Benefit of Developing Customers Profile Analysis to Implement

Personalized Pricing in a Supply Chain"

A. Description about Model U.

The sequence of events under model U is as follows. First, the manufacturer decides on a wholesale price ω to maximize his profit Π_M . Then, the platform determines p to implement uniform pricing with the objective of maximizing her profit Π_P .

The manufacturer's problem is given by

$$\max_{\omega^U} \quad (\omega - c)(1 - p),
s.t. \quad \omega \ge c.$$
(A1)

The platform's problem is given by

$$\max_{p} \quad (p-\omega)(1-p),$$
(A2)
s.t. $\omega \le p \le 1.$

B. Proofs.

Proof of Lemma 1. We solve the uniform pricing model using backward induction. First, given ω , the platform decides a retail price to maximize her profit $\Pi_P = (p - \omega)(1 - p)$. Due to $\frac{\partial^2 \Pi_P}{\partial p^2} = -2 < 0$, solving the first order condition $\frac{\partial \Pi_P}{\partial p} = 1 - 2p - \omega = 0$ yields $p^U = \frac{1+\omega}{2}$. Then, plugging p^U into the profit of the manufacturer, we have $\Pi_M = (\omega - c)(1 - p^U) = \frac{(1-\omega)(\omega-c)}{2}$. By solving the first order condition (i.e., $\frac{\partial \Pi_M}{\partial \omega} = \frac{1+c-2\omega}{2} = 0$) within $\omega \ge c$, we get $\omega^U = \frac{1+c}{2}$, so $p^U = \frac{3+c}{4}$, $\pi_M^U = \frac{(1-c)^2}{8}$ and $\pi_P^U = \frac{(1-c)^2}{16}$. \Box

Proof of Lemma 2. Similarly, we solve the personalized pricing model using backward induction. Given ω , the platform decides a customer profile error to maximize her profit. By solving the first order condition (i.e., $\frac{\partial \Pi_P}{\partial \Delta} = -1 + \Delta + \omega + 2\beta(\Delta_0 - \Delta) = 0$), we get $\Delta_1 = \frac{1 - \omega - 2\beta\Delta_0}{1 - 2\beta}$. Due to $\frac{\partial^2 \Pi_P}{\partial \Delta^2} = 1 - 2\beta$, we have the following two cases.

(i) When $0 < \beta \leq \frac{1}{2}$, Π_P is a convex function of Δ as $\frac{\partial^2 \Pi_P}{\partial \Delta^2} > 0$. Due to $c \leq \omega \leq 1 - \Delta_0$, i.e., $0 < \Delta_0 \leq \Delta_1$, Π_P decreases in $\Delta \in [0, \Delta_0]$, so $\Delta^P = 0$.

- (ii) When $\beta > \frac{1}{2}$, Π_P is a concave function of Δ as $\frac{\partial^2 \Pi_P}{\partial \Delta^2} < 0$.
- (ii-a) If $c \leq \omega \leq 1 2\beta \Delta_0$, i.e., $\Delta_1 < 0 < \Delta_0$, Π_P decreases in $\Delta \in [0, \Delta_0]$, so $\Delta^P = 0$.

(ii-b) If $1 - 2\beta \Delta_0 < \omega \le 1 - \Delta_0$, i.e., $0 < \Delta_1 \le \Delta_0$, Π_P first increases in $\Delta \in [0, \Delta_1]$ and then decreases in $\Delta \in (\Delta_1, \Delta_0]$, so $\Delta^P = \Delta_1$.

Then, the desired result follows as shown in Lemma 2. \Box

Proof of Proposition 1. Plugging Δ^P in Lemma 2 into the profit of manufacturer.

(i) When $0 < \beta \le \frac{1}{2}$, then

$$\Pi_M = (\omega - c)(1 - \omega), c \le \omega \le 1 - \Delta_0 \tag{A3}$$

By solving the first order condition (i.e., $\frac{\partial \Pi_M}{\partial \omega} = 1 + c - 2\omega = 0$), we get $\omega_1 = \frac{1+c}{2} > c$. Therefore, we have the following cases.

(i-a) If $0 \le c \le 1 - 2\Delta_0$, i.e., $c < \omega_1 \le 1 - \Delta_0$, Π_M first increases in $\omega \in [c, \omega_1]$ and then decreases in $\omega \in (\omega_1, 1 - \Delta_0]$, so $\omega^P = \omega_1 = \frac{1+c}{2}$ and $\Delta^P = 0$.

(i-b) If $1 - 2\Delta_0 < c \le 1 - \Delta_0$, i.e., $\omega_1 > 1 - \Delta_0$, Π_M increases in $\omega \in [c, 1 - \Delta_0]$, so $\omega^P = 1 - \Delta_0$ and $\Delta^P = 0$.

(ii) When $\beta > \frac{1}{2}$, we have the following cases.

(ii-a) If $0 \le c \le 1 - 2\beta \Delta_0$, then

$$\Pi_M = \begin{cases} (\omega - c)(1 - \omega), & c \le \omega \le 1 - 2\beta \Delta_0 \\ (\omega - c)(1 - \omega - \Delta_1), & 1 - 2\beta \Delta_0 < \omega \le 1 - \Delta_0 \end{cases}$$
(A4)

By solving the first order condition of the first line (i.e., $\frac{\partial \Pi_M}{\partial \omega} = 1 + c - 2\omega = 0$), we get $\omega_1 = \frac{1+c}{2} > c$. By solving the first order condition of the second line (i.e., $\frac{\partial \Pi_M}{\partial \omega} = \frac{2\beta(2\omega-c-1+\Delta_0)}{1-2\beta} = 0$), we get $\omega_2 = \frac{1+c-\Delta_0}{2} \le 1 - \Delta_0$. Then, comparing ω_1 , ω_2 and three endpoints, we have

1) if $0 \le c \le 1 - 4\beta \Delta_0$, Π_M first increases in $\omega \in [c, \omega_1]$ and then decreases in $\omega \in (\omega_1, 1 - \Delta_0]$, so $\omega^P = \omega_1 = \frac{1+c}{2}$ and $\Delta^P = 0$;

2) if $1 - 4\beta \Delta_0 < c \le 1 - (4\beta - 1)\Delta_0$, Π_M first increases in $\omega \in [c, 1 - 2\beta \Delta_0]$ and then decreases in $\omega \in (1 - 2\beta \Delta_0, 1 - \Delta_0]$, so $\omega^P = 1 - 2\beta \Delta_0$ and $\Delta^P = 0$;

3) if $1 - (4\beta - 1)\Delta_0 < c \le 1 - 2\beta\Delta_0$, Π_M first increases in $\omega \in [c, \omega_2]$ and then decreases in $\omega \in (\omega_2, 1 - \Delta_0]$, so $\omega^P = \omega_2 = \frac{1+c-\Delta_0}{2}$ and $\Delta^P = \Delta_1 = \frac{1-c+(1-4\beta)\Delta_0}{2(1-2\beta)}$. (ii) b) If $1 - 2\beta\Delta < c \le 1 - \Delta$, then

(ii-b) If $1 - 2\beta \Delta_0 \le c \le 1 - \Delta_0$, then

$$\Pi_M = (\omega - c)(1 - \omega - \Delta_1), c \le \omega \le 1 - \Delta_0 \tag{A5}$$

By solving the first order condition (i.e., $\frac{\partial \Pi_M}{\partial \omega} = \frac{2\beta(2\omega - c - 1 + \Delta_0)}{1 - 2\beta} = 0$), we get $\omega_2 = \frac{1 + c - \Delta_0}{2}$ and

 $c \leq \omega_2 \leq 1 - \Delta_0$. Π_M first increases in $\omega \in [c, \omega_2]$ and then decreases in $\omega \in (\omega_2, 1 - \Delta_0]$, so $\omega^P = \omega_2 = \frac{1+c-\Delta_0}{2}$ and $\Delta^P = \Delta_1 = \frac{1-c+(1-4\beta)\Delta_0}{2(1-2\beta)}$.

We define the following sets according to the analysis of the above cases.

$$\begin{split} I = &\{0 < \beta \le \frac{1}{2}, 0 \le c \le 1 - 2\Delta_0\} \cup \{\beta > \frac{1}{2}, 0 \le c \le 1 - 4\beta\Delta_0\}\\ II = &\{0 < \beta \le \frac{1}{2}, 1 - 2\Delta_0 < c \le 1 - \Delta_0\},\\ III = &\{\beta > \frac{1}{2}, 1 - 4\beta\Delta_0 < c \le 1 - (4\beta - 1)\Delta_0\},\\ IV = &\{\beta > \frac{1}{2}, 1 - (4\beta - 1)\Delta_0 < c \le 1 - \Delta_0\}. \end{split}$$

Then the desired result follows as shown in Proposition 1. \Box

Proof of Lemma 3. First, we establish the monotonicity of the equilibrium wholesale price and profile error with respect to c and β case by case according to the results in Proposition 1.

(i) When $(\beta, c) \in I$, then $(\omega^P, \Delta^P) = (\frac{1+c}{2}, 0)$. It is easy to check that ω^P increases with c while Δ^P is irrelevant with c; moreover, both ω^P and Δ^P are irrelevant with β .

(ii) When $(\beta, c) \in II$, then $(\omega^P, \Delta^P) = (1 - \Delta_0, 0)$. It is easy to check that both ω^P and Δ^P are irrelevant with c and β .

(iii) When $(\beta, c) \in III$, then $(\omega^P, \Delta^P) = (1 - 2\beta\Delta_0, 0)$. It is easy to check that both ω^P and Δ^P are irrelevant with c; moreover, ω^P decreases with β while Δ^P is irrelevant with β .

(iv) When $(\beta, c) \in IV$, then $(\omega^P, \Delta^P) = \left(\frac{1+c-\Delta_0}{2}, \frac{1-c+(1-4\beta)\Delta_0}{2(1-2\beta)}\right)$. It is easy to check that both ω^P and Δ^P increases with c; moreover, ω^P is irrelevant with β , while Δ^P increases with β as $\frac{\partial\Delta^P}{\partial\beta} = \frac{4(1-c-\Delta_0)}{4(1-2\beta)^2} > 0.$

Next, we analyze the impact of c on ω^P and Δ^P .

(i) When $0 < \beta \leq \frac{1}{2}$, the path of the equilibrium solutions is $I \to II$. Therefore, ω^P first increases and then keeps irrelevant with c, but Δ^P keeps irrelevant with c.

(ii) When $\frac{1}{2} < \beta \leq \frac{1}{4\Delta_0}$, the path of the equilibrium solutions is $I \to III \to IV$. Therefore, ω^P first increases, then keeps irrelevant and finally increases with c, but Δ^P first keeps irrelevant and then increases with c.

(iii) When $\frac{1}{4\Delta_0} < \beta \leq \frac{1+\Delta_0}{4\Delta_0}$, the path of the equilibrium solutions is $III \to IV$. Therefore, ω^P first keeps irrelevant and then increases with c, but Δ^P first keeps irrelevant and then increases with c.

(iv) When $\beta > \frac{1+\Delta_0}{4\Delta_0}$, the path of the equilibrium solutions is IV. Therefore, both ω^P and Δ^P increases with c.

In summary, $\frac{\partial \omega_P}{\partial c} \ge 0$ and $\frac{\partial \Delta_P}{\partial c} \ge 0$ always exists.

Finally, we analyze the impact of β on ω^P and Δ^P .

(i) When $0 < c \le 1 - 2\Delta_0$, the path of the equilibrium solutions is $I \to III \to IV$. Therefore, ω^P first keeps irrelevant, then decreases and finally keeps irrelevant with β , but Δ^P first keeps irrelevant and then increases with β .

(ii) When $1 - 2\Delta_0 < c \le 1 - \Delta_0$, the path of the equilibrium solutions is $II \to III \to IV$. Therefore, ω^P first keeps irrelevant, then decreases and finally keeps irrelevant with β , but Δ^P first keeps irrelevant and then increases with β .

In summary, $\frac{\partial \omega_P}{\partial \beta} \leq 0$ and $\frac{\partial \Delta_P}{\partial \beta} \geq 0$ always exists. \Box

Proof of Proposition 2. Similarly, we establish the monotonicity of the equilibrium demand and profits with respect to c and β case by case according to the results in Proposition 1.

(i) When $(\beta, c) \in I$, then $D^P = \frac{1-c}{2}$, $\Pi^P_M = \frac{(1-c)^2}{4}$ and $\Pi^P_P = \frac{(1-c)^2}{8} - \beta \Delta_0^2$. It is easy to check that D^P , Π^P_M and Π^P_P decrease with c; moreover, D^P and Π^P_M are irrelevant with β while Π^P_P decrease with β .

(ii) When $(\beta, c) \in II$, then $D^P = \Delta_0$, $\Pi^P_M = (1 - c - \Delta_0)\Delta_0$ and $\Pi^P_P = \frac{(1 - 2\beta)\Delta_0^2}{2}$. It is easy to check that Π^P_M decreases with c while D^P and Π^P_P are irrelevant with c; moreover, D^P and Π^P_M are irrelevant with β and Π^P_P decreases with β .

(iii) When $(\beta, c) \in III$, then $D^P = 2\beta\Delta_0$, $\Pi^P_M = (1 - c - 2\beta\Delta_0)2\beta\Delta_0$ and $\Pi^P_P = \beta\Delta_0^2$. It is easy to check that Π^P_M decrease with c while D^P and Π^P_P are irrelevant with c; moreover, Π^P_M decreases with β as $\frac{\partial \Pi^P_M}{\partial \beta} = 2\Delta_0(1 - c - 4\beta\Delta_0) < 0$, D^P and Π^P_P increase with β .

(iv) When $(\beta, c) \in IV$, then $D^P = \frac{\beta(1-c-\Delta_0)}{2\beta-1}$, $\Pi^P_M = \frac{\beta(1-c-\Delta_0)^2}{2(2\beta-1)}$ and $\Pi^P_P = \frac{\beta(1-c-\Delta_0)^2}{4(2\beta-1)}$.

It is easy to check that D^P , Π^P_M and Π^P_P decrease with c; D^P , Π^P_M and Π^P_P decrease with β .

Next, we analyze the impact of c on Π_M^P and Π_P^P .

(i) When $0 < \beta \leq \frac{1}{2}$, the path of the equilibrium solutions is $I \to II$. Therefore, Π_M^P decreases with c, but D^P and Π_P^P first decrease and then keep irrelevant with c.

(ii) When $\frac{1}{2} < \beta \leq \frac{1}{4\Delta_0}$, the path of the equilibrium solutions is $I \to III \to IV$. Therefore, Π_M^P decreases with c, but D^P and Π_P^P first decrease, then keep irrelevant, then decrease with c.

(iii) When $\frac{1}{4\Delta_0} < \beta \leq \frac{1+\Delta_0}{4\Delta_0}$, the path of the equilibrium solutions is $III \to IV$. Therefore, Π_M^P decreases with c, but D^P and Π_P^P first keep irrelevant and then decrease with c.

(iv) When $\beta > \frac{1+\Delta_0}{4\Delta_0}$, the path of the equilibrium solutions is IV. Therefore, D^P , Π^P_M and Π^P_P decrease with c.

In summary, $\frac{\partial \Pi_M^P}{\partial c} < 0$, $\frac{\partial \Pi_P^P}{\partial c} \le 0$ and $\frac{\partial D^P}{\partial c} \le 0$.

Finally, we analyze the impact of β on D^P , Π^P_M and Π^P_P .

(i) When $0 < c \le 1 - 2\Delta_0$, the path of the equilibrium solutions is $I \to III \to IV$. Therefore, Π_M^P first keeps irrelevant and then decreases with β , Π_P^P first decreases, then increases and finally decreases with β , D^P first keeps irrelevant, then increases and finally decreases with β .

(ii) When $1 - 2\Delta_0 < c \le 1 - \Delta_0$, the path of the equilibrium solutions is $II \to III \to IV$. Therefore, Π^P_M first keeps irrelevant and then decreases with β , Π^P_P first decreases, then increases and finally decreases with β , D^P first keeps irrelevant, then increases and finally decreases with β . \Box

Proof of Proposition 3. Recall that $\pi_M^U = \frac{(1-c)^2}{8}$ and $\pi_P^U = \frac{(1-c)^2}{16}$. Then we compare the profits case by case according to the results in Proposition 1.

(i) When $(\beta, c) \in I$, then $\Pi_M^P = \frac{(1-c)^2}{4}$ and $\Pi_P^P = \frac{(1-c)^2}{8} - \beta \Delta_0^2$. $\pi_M^U - \Pi_M^P = -\frac{(1-c)^2}{8} < 0$ and $\pi_P^U - \Pi_P^P = -\frac{(1-c)^2}{16} + \beta \Delta_0^2. \text{ Define } f_1(x) = -\frac{x^2}{16} + \beta \Delta_0^2, \text{ where } x = 1 - c \ge \max\{2\Delta_0, 4\beta\Delta_0\}.$ (i-a) If $0 < \beta \leq \frac{1}{4}$, then $f_1(x) < 0$ when $x \in [2\Delta_0, +\infty)$. (i-b) If $\frac{1}{4} < \beta \leq \frac{1}{2}$, then $f_1(x) > 0$ when $x \in [2\Delta_0, 4\sqrt{\beta}\Delta_0)$ and $f_1(x) < 0$ when $x \in (4\sqrt{\beta}\Delta_0, +\infty)$. (i-c) If $\frac{1}{2} < \beta \le 1$, then $f_1(x) > 0$ when $x \in [4\beta\Delta_0, 4\sqrt{\beta}\Delta_0)$ and $f_1(x) < 0$ when $x \in (4\sqrt{\beta}\Delta_0, +\infty)$. (i-d) If $\beta > 1$, then $f_1(x) < 0$ when $x \in [4\beta \Delta_0, +\infty)$. (ii) When $(\beta, c) \in II$, then $\Pi_M^P = (1 - c - \Delta_0)\Delta_0$ and $\Pi_P^P = \frac{(1 - 2\beta)\Delta_0^2}{2}$. $\pi_M^U - \Pi_M^P = \frac{(1 - c)^2}{8} - (1 - c)^2$ $c)\Delta_0 + \Delta_0^2$. Define $f_2(x) = \frac{x^2}{8} - x\Delta_0 + \Delta_0^2$, where $\Delta_0 \le x < 2\Delta_0$. Therefore, $f_2(x) > 0$ when $x \in C$ $[\Delta_0, (4-2\sqrt{2})\Delta_0]$ and $f_2(x) < 0$ when $x \in ((4-2\sqrt{2})\Delta_0, 2\Delta_0)$. Similarly, $\pi_P^U - \Pi_P^P = f_3(x) = \frac{x^2}{16} - \frac{(1-2\beta)\Delta_0^2}{2}$, where $\Delta_0 \le x < 2\Delta_0$. (ii-a) If $0 < \beta \leq \frac{1}{4}$, then $f_3(x) < 0$ when $x \in [\Delta_0, 2\Delta_0)$. (ii-b) If $\frac{1}{4} < \beta \leq \frac{7}{16}$, then $f_3(x) < 0$ when $x \in [\Delta_0, 2\sqrt{2-4\beta}\Delta_0]$ and $f_3(x) > 0$ when $x \in [\Delta_0, 2\sqrt{2-4\beta}\Delta_0]$ $(2\sqrt{2-4\beta}\Delta_0,+\infty).$ (ii-c) If $\frac{7}{16} < \beta \leq \frac{1}{2}$, then $f_3(x) > 0$ when $x \in [\Delta_0, 2\Delta_0)$. (iii) When $(\beta, c) \in III$, then $\Pi_M^P = (1 - c - 2\beta\Delta_0)2\beta\Delta_0$ and $\Pi_P^P = \beta\Delta_0^2$. $\pi_M^U - \Pi_M^P = f_4(x) =$ $\frac{x^2}{8} - 2\beta\Delta_0 x + 4\beta^2\Delta_0^2$, where $(4\beta - 1)\Delta_0 \le x < 4\beta\Delta_0$. (iii-a) If $\frac{1}{2} < \beta \leq \frac{1+\sqrt{2}}{4}$, then $f_4(x) > 0$ when $x \in [(4\beta - 1)\Delta_0, (8 - 4\sqrt{2})\beta\Delta_0)$ and $f_4(x) < 0$ when $x \in ((8 - 4\sqrt{2})\beta\Delta_0, 4\beta\Delta_0).$ (iii-b) If $\beta > \frac{1+\sqrt{2}}{4}$, then $f_4(x) < 0$ when $x \in [(4\beta - 1)\Delta_0, 4\beta\Delta_0)$. Similarly, $\pi_P^U - \Pi_P^P = f_5(x) = \frac{x^2}{16} - \beta \Delta_0^2$, where $(4\beta - 1)\Delta_0 \le x < 4\beta \Delta_0$. (iii-a) If $\frac{1}{2} < \beta \leq 1$, then $f_5(x) < 0$ when $x \in [(4\beta - 1)\Delta_0, 4\beta\Delta_0)$. (iii-b) If $1 < \beta \leq \frac{3+2\sqrt{2}}{4}$, then $f_5(x) < 0$ when $x \in [(4\beta - 1)\Delta_0, 4\sqrt{\beta}\Delta_0)$ and $f_5(x) > 0$ when $x \in [(4\beta - 1)\Delta_0, 4\sqrt{\beta}\Delta_0)$ $(A \overline{B} A A B A)$

$$(4\sqrt{\beta}\Delta_0, 4\beta\Delta_0).$$

(iii-c) If $\beta > \frac{3+2\sqrt{2}}{4}$, then $f_5(x) > 0$ when $x \in [(4\beta - 1)\Delta_0, 4\beta\Delta_0)$.

(iv) When $(\beta, c) \in IV$, then $\Pi_M^P = \frac{\beta(1-c-\Delta_0)^2}{2(2\beta-1)}$ and $\Pi_P^P = \frac{\beta(1-c-\Delta_0)^2}{4(2\beta-1)}$. $\pi_M^U - \Pi_M^P = f_6(x) = \frac{x^2}{8} - \frac{\beta(x-\Delta_0)^2}{2(2\beta-1)}$, where $\Delta_0 \leq x < (4\beta-1)\Delta_0$. (iv-a) If $\frac{1}{2} < \beta \leq \frac{1+\sqrt{2}}{4}$, then $f_6(x) > 0$ when $x \in [\Delta_0, (4\beta-1)\Delta_0)$. (iv-b) If $\beta > \overline{\beta}$, then $f_6(x) > 0$ when $x \in [\Delta_0, \frac{A}{A-1}\Delta_0)$ and $f_6(x) < 0$ when $x \in (\frac{A}{A-1}\Delta_0, (4\beta-1)\Delta_0)$, where $A = \sqrt{\frac{4\beta}{2\beta-1}}$. Due to $\pi_P^U - \Pi_P^P = \frac{1}{2}f_6(x)$, the analysis is similar and we omit the detail. In summary, as far as the comparison of π_M^U and Π_M^P , we have $\pi_M^P \ge \pi_M^U$ if $0 < c \le \min\{1 - (4 - 2\sqrt{2})\Delta_0, 1 - (8 - 4\sqrt{2})\beta\Delta_0, 1 - \frac{A\Delta_0}{A-1})$ and $\pi_M^P < \pi_M^U$ otherwise.

Regarding the comparison of π_P^U and Π_P^P , we can use the following Figure A to show the results.

Figure A The comparison of platform's profits Source(s): Figure created by authors

We define the following sets according to the analysis of the above cases.

$$\begin{split} A = &\{1 - (4 - 2\sqrt{2})\Delta_0 < c \le \min\{1 - 2\sqrt{2 - 4\beta}\Delta_0, 1 - \Delta_0\} \cup \max\{1 - \frac{A\Delta_0}{A - 1}, 1 - (8 - 4\sqrt{2})\beta\Delta_0\} < c \le 1 - \Delta_0\}, \\ B = &\{0 \le c \le \min\{1 - 2\Delta_0, 1 - 4\sqrt{\beta}\Delta_0, 1 - 4\beta\Delta_0\}\} \cup \{\max\{1 - 2\Delta_0, 1 - 2\sqrt{2 - 4\beta}\Delta_0\} < c \le 1 - (4 - 2\sqrt{2})\Delta_0\} \\ \cup \{\max\{1 - 4\beta\Delta_0, 1 - 4\sqrt{\beta}\Delta_0\} \le c < \min\{1 - (8 - 4\sqrt{2})\beta\Delta_0, 1 - \frac{A\Delta_0}{A - 1}\}\}, \\ C = &\{\max\{1 - (4 - 2\sqrt{2})\Delta_0, 1 - 2\sqrt{2 - 4\beta}\Delta_0\} \le c \le 1 - \Delta_0\} \cup \{1 - (8 - 4\sqrt{2})\beta\Delta_0 \le c < 1 - (4\beta - 1)\Delta_0\}, \\ D = &\{1 - 4\sqrt{\beta}\Delta_0 \le c < \min\{1 - 2\sqrt{2 - 4\beta}\Delta_0, 1 - (4 - 2\sqrt{2})\Delta_0\}\} \cup \{1 - 4\sqrt{\beta}\Delta_0 \le c < 1 - 4\beta\Delta_0\} \\ \cup \{0 \le c < \min\{1 - 4\sqrt{\beta}\Delta_0, 1 - (4\beta - 1)\Delta_0\}\}. \end{split}$$

Then, the final results are shown in Proposition 3.