
Online Appendix

“On the Benefit of Developing Customers Profile Analysis to Implement

Personalized Pricing in a Supply Chain”

A. Description about Model U.

The sequence of events under model U is as follows. First, the manufacturer decides on a wholesale

price ω to maximize his profit ΠM . Then, the platform determines p to implement uniform pricing

with the objective of maximizing her profit ΠP .

The manufacturer’s problem is given by

max
ωU

(ω− c)(1− p),

s.t. ω≥ c.

(A1)

The platform’s problem is given by

max
p

(p−ω)(1− p),

s.t. ω≤ p≤ 1.

(A2)

B. Proofs.

Proof of Lemma 1. We solve the uniform pricing model using backward induction. First, given

ω, the platform decides a retail price to maximize her profit ΠP = (p− ω)(1− p). Due to ∂2ΠP
∂p2

=

−2< 0, solving the first order condition ∂ΠP
∂p

= 1− 2p−ω = 0 yields pU = 1+ω
2
. Then, plugging pU

into the profit of the manufacturer, we have ΠM = (ω− c)(1−pU) = (1−ω)(ω−c)

2
. By solving the first

order condition (i.e., ∂ΠM
∂ω

= 1+c−2ω
2

= 0) within ω ≥ c, we get ωU = 1+c
2
, so pU = 3+c

4
, πU

M = (1−c)2

8

and πU
P = (1−c)2

16
. □

Proof of Lemma 2. Similarly, we solve the personalized pricing model using backward induc-

tion. Given ω, the platform decides a customer profile error to maximize her profit. By solving the

first order condition (i.e., ∂ΠP
∂∆

= −1 +∆+ ω + 2β(∆0 −∆) = 0), we get ∆1 =
1−ω−2β∆0

1−2β
. Due to

∂2ΠP
∂∆2 = 1− 2β, we have the following two cases.

(i) When 0 < β ≤ 1
2
, ΠP is a convex function of ∆ as ∂2ΠP

∂∆2 > 0. Due to c ≤ ω ≤ 1 −∆0, i.e.,

0<∆0 ≤∆1, ΠP decreases in ∆∈ [0,∆0], so ∆P = 0.

(ii) When β > 1
2
, ΠP is a concave function of ∆ as ∂2ΠP

∂∆2 < 0.

(ii-a) If c≤ ω≤ 1− 2β∆0, i.e., ∆1 < 0<∆0, ΠP decreases in ∆∈ [0,∆0], so ∆P = 0.
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(ii-b) If 1− 2β∆0 < ω ≤ 1−∆0, i.e., 0 < ∆1 ≤ ∆0, ΠP first increases in ∆ ∈ [0,∆1] and then

decreases in ∆∈ (∆1,∆0], so ∆P =∆1.

Then, the desired result follows as shown in Lemma 2. □

Proof of Proposition 1. Plugging ∆P in Lemma 2 into the profit of manufacturer.

(i) When 0<β ≤ 1
2
, then

ΠM = (ω− c)(1−ω), c≤ ω≤ 1−∆0 (A3)

By solving the first order condition (i.e., ∂ΠM
∂ω

= 1+ c− 2ω = 0), we get ω1 =
1+c
2

> c. Therefore,

we have the following cases.

(i-a) If 0≤ c≤ 1− 2∆0, i.e., c < ω1 ≤ 1−∆0, ΠM first increases in ω ∈ [c,ω1] and then decreases

in ω ∈ (ω1,1−∆0] , so ωP = ω1 =
1+c
2

and ∆P = 0.

(i-b) If 1− 2∆0 < c≤ 1−∆0, i.e., ω1 > 1−∆0, ΠM increases in ω ∈ [c,1−∆0] , so ωP = 1−∆0

and ∆P = 0.

(ii) When β > 1
2
, we have the following cases.

(ii-a) If 0≤ c≤ 1− 2β∆0, then

ΠM =


(ω− c)(1−ω), c≤ ω≤ 1− 2β∆0

(ω− c)(1−ω−∆1), 1− 2β∆0 <ω≤ 1−∆0

(A4)

By solving the first order condition of the first line (i.e., ∂ΠM
∂ω

= 1 + c− 2ω = 0), we get ω1 =

1+c
2

> c. By solving the first order condition of the second line (i.e., ∂ΠM
∂ω

= 2β(2ω−c−1+∆0)

1−2β
= 0), we

get ω2 =
1+c−∆0

2
≤ 1−∆0. Then, comparing ω1, ω2 and three endpoints, we have

1) if 0≤ c≤ 1− 4β∆0, ΠM first increases in ω ∈ [c,ω1] and then decreases in ω ∈ (ω1,1−∆0] , so

ωP = ω1 =
1+c
2

and ∆P = 0;

2) if 1− 4β∆0 < c≤ 1− (4β− 1)∆0, ΠM first increases in ω ∈ [c,1− 2β∆0] and then decreases in

ω ∈ (1− 2β∆0,1−∆0] , so ωP = 1− 2β∆0 and ∆P = 0;

3) if 1 − (4β − 1)∆0 < c ≤ 1 − 2β∆0, ΠM first increases in ω ∈ [c,ω2] and then decreases in

ω ∈ (ω2,1−∆0] , so ωP = ω2 =
1+c−∆0

2
and ∆P =∆1 =

1−c+(1−4β)∆0
2(1−2β)

.

(ii-b) If 1− 2β∆0 ≤ c≤ 1−∆0, then

ΠM = (ω− c)(1−ω−∆1), c≤ ω≤ 1−∆0 (A5)

By solving the first order condition (i.e., ∂ΠM
∂ω

= 2β(2ω−c−1+∆0)

1−2β
= 0), we get ω2 =

1+c−∆0
2

and
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c≤ ω2 ≤ 1−∆0. ΠM first increases in ω ∈ [c,ω2] and then decreases in ω ∈ (ω2,1−∆0], so ωP =

ω2 =
1+c−∆0

2
and ∆P =∆1 =

1−c+(1−4β)∆0
2(1−2β)

.

We define the following sets according to the analysis of the above cases.

I ={0<β ≤ 1
2
,0≤ c≤ 1− 2∆0}∪ {β > 1

2
,0≤ c≤ 1− 4β∆0},

II ={0<β ≤ 1
2
,1− 2∆0 < c≤ 1−∆0},

III ={β > 1
2
,1− 4β∆0 < c≤ 1− (4β− 1)∆0},

IV ={β > 1
2
,1− (4β− 1)∆0 < c≤ 1−∆0}.

Then the desired result follows as shown in Proposition 1. □

Proof of Lemma 3. First, we establish the monotonicity of the equilibrium wholesale price and

profile error with respect to c and β case by case according to the results in Proposition 1.

(i) When (β, c) ∈ I, then (ωP ,∆P ) =
(
1+c
2
,0
)
. It is easy to check that ωP increases with c while

∆P is irrelevant with c; moreover, both ωP and ∆P are irrelevant with β.

(ii) When (β, c) ∈ II, then (ωP ,∆P ) = (1−∆0,0). It is easy to check that both ωP and ∆P are

irrelevant with c and β.

(iii) When (β, c)∈ III, then (ωP ,∆P ) = (1− 2β∆0,0). It is easy to check that both ωP and ∆P

are irrelevant with c; moreover, ωP decreases with β while ∆P is irrelevant with β.

(iv) When (β, c) ∈ IV , then (ωP ,∆P ) =
(

1+c−∆0
2

, 1−c+(1−4β)∆0
2(1−2β)

)
. It is easy to check that both

ωP and ∆P increases with c; moreover, ωP is irrelevant with β, while ∆P increases with β as

∂∆P

∂β
= 4(1−c−∆0)

4(1−2β)2
> 0.

Next, we analyze the impact of c on ωP and ∆P .

(i) When 0<β ≤ 1
2
, the path of the equilibrium solutions is I → II. Therefore, ωP first increases

and then keeps irrelevant with c, but ∆P keeps irrelevant with c.

(ii) When 1
2
< β ≤ 1

4∆0
, the path of the equilibrium solutions is I → III → IV . Therefore, ωP

first increases, then keeps irrelevant and finally increases with c, but ∆P first keeps irrelevant and

then increases with c.

(iii) When 1
4∆0

< β ≤ 1+∆0
4∆0

, the path of the equilibrium solutions is III → IV . Therefore, ωP

first keeps irrelevant and then increases with c, but ∆P first keeps irrelevant and then increases

with c.

(iv) When β > 1+∆0
4∆0

, the path of the equilibrium solutions is IV . Therefore, both ωP and ∆P

increases with c.
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In summary, ∂ωP
∂c

≥ 0 and ∂∆P
∂c

≥ 0 always exists.

Finally, we analyze the impact of β on ωP and ∆P .

(i) When 0 < c ≤ 1− 2∆0, the path of the equilibrium solutions is I → III → IV . Therefore,

ωP first keeps irrelevant, then decreases and finally keeps irrelevant with β, but ∆P first keeps

irrelevant and then increases with β.

(ii) When 1− 2∆0 < c≤ 1−∆0, the path of the equilibrium solutions is II → III → IV . There-

fore, ωP first keeps irrelevant, then decreases and finally keeps irrelevant with β, but ∆P first keeps

irrelevant and then increases with β.

In summary, ∂ωP
∂β

≤ 0 and ∂∆P
∂β

≥ 0 always exists. □

Proof of Proposition 2. Similarly, we establish the monotonicity of the equilibrium demand and

profits with respect to c and β case by case according to the results in Proposition 1.

(i) When (β, c)∈ I, then DP = 1−c
2
, ΠP

M = (1−c)2

4
and ΠP

P = (1−c)2

8
−β∆2

0. It is easy to check that

DP , ΠP
M and ΠP

P decrease with c; moreover, DP and ΠP
M are irrelevant with β while ΠP

P decrease

with β.

(ii) When (β, c) ∈ II, then DP = ∆0, Π
P
M = (1 − c −∆0)∆0 and ΠP

P =
(1−2β)∆2

0
2

. It is easy to

check that ΠP
M decreases with c while DP and ΠP

P are irrelevant with c; moreover, DP and ΠP
M are

irrelevant with β and ΠP
P decreases with β.

(iii) When (β, c) ∈ III, then DP = 2β∆0, Π
P
M = (1− c− 2β∆0)2β∆0 and ΠP

P = β∆2
0 . It is easy

to check that ΠP
M decrease with c while DP and ΠP

P are irrelevant with c; moreover, ΠP
M decreases

with β as
∂ΠP

M
∂β

= 2∆0(1− c− 4β∆0)< 0, DP and ΠP
P increase with β.

(iv) When (β, c)∈ IV , then DP = β(1−c−∆0)

2β−1
, ΠP

M = β(1−c−∆0)
2

2(2β−1)
and ΠP

P = β(1−c−∆0)
2

4(2β−1)
.

It is easy to check that DP , ΠP
M and ΠP

P decrease with c; DP , ΠP
M and ΠP

P decrease with β.

Next, we analyze the impact of c on ΠP
M and ΠP

P .

(i) When 0 < β ≤ 1
2
, the path of the equilibrium solutions is I → II. Therefore, ΠP

M decreases

with c, but DP and ΠP
P first decrease and then keep irrelevant with c.

(ii) When 1
2
< β ≤ 1

4∆0
, the path of the equilibrium solutions is I → III → IV . Therefore, ΠP

M

decreases with c, but DP and ΠP
P first decrease, then keep irrelevant, then decrease with c.

(iii) When 1
4∆0

< β ≤ 1+∆0
4∆0

, the path of the equilibrium solutions is III → IV . Therefore, ΠP
M

decreases with c, but DP and ΠP
P first keep irrelevant and then decrease with c.

(iv) When β > 1+∆0
4∆0

, the path of the equilibrium solutions is IV . Therefore, DP , ΠP
M and ΠP

P

decrease with c.

In summary,
∂ΠP

M
∂c

< 0,
∂ΠP

P
∂c

≤ 0 and ∂DP

∂c
≤ 0.

Finally, we analyze the impact of β on DP , ΠP
M and ΠP

P .
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(i) When 0 < c ≤ 1− 2∆0, the path of the equilibrium solutions is I → III → IV . Therefore,

ΠP
M first keeps irrelevant and then decreases with β, ΠP

P first decreases,then increases and finally

decreases with β, DP first keeps irrelevant, then increases and finally decreases with β.

(ii) When 1− 2∆0 < c≤ 1−∆0, the path of the equilibrium solutions is II → III → IV . There-

fore, ΠP
M first keeps irrelevant and then decreases with β, ΠP

P first decreases, then increases and

finally decreases with β, DP first keeps irrelevant, then increases and finally decreases with β. □

Proof of Proposition 3. Recall that πU
M = (1−c)2

8
and πU

P = (1−c)2

16
. Then we compare the profits

case by case according to the results in Proposition 1.

(i) When (β, c) ∈ I, then ΠP
M = (1−c)2

4
and ΠP

P = (1−c)2

8
− β∆2

0. πU
M − ΠP

M = − (1−c)2

8
< 0 and

πU
P −ΠP

P =− (1−c)2

16
+β∆2

0. Define f1(x) =−x2

16
+β∆2

0, where x= 1− c≥max{2∆0,4β∆0}.

(i-a) If 0<β ≤ 1
4
, then f1(x)< 0 when x∈ [2∆0,+∞).

(i-b) If 1
4
<β ≤ 1

2
, then f1(x)> 0 when x∈ [2∆0,4

√
β∆0) and f1(x)< 0 when x∈ (4

√
β∆0,+∞).

(i-c) If 1
2
<β ≤ 1, then f1(x)> 0 when x∈ [4β∆0,4

√
β∆0) and f1(x)< 0 when x∈ (4

√
β∆0,+∞).

(i-d) If β > 1, then f1(x)< 0 when x∈ [4β∆0,+∞).

(ii) When (β, c) ∈ II, then ΠP
M = (1− c−∆0)∆0 and ΠP

P =
(1−2β)∆2

0
2

. πU
M −ΠP

M = (1−c)2

8
− (1−

c)∆0 +∆2
0. Define f2(x) =

x2

8
− x∆0 +∆2

0, where ∆0 ≤ x < 2∆0. Therefore, f2(x) > 0 when x ∈

[∆0, (4− 2
√
2)∆0] and f2(x)< 0 when x∈ ((4− 2

√
2)∆0,2∆0).

Similarly, πU
P −ΠP

P = f3(x) =
x2

16
− (1−2β)∆2

0
2

, where ∆0 ≤ x< 2∆0.

(ii-a) If 0<β ≤ 1
4
, then f3(x)< 0 when x∈ [∆0,2∆0).

(ii-b) If 1
4
< β ≤ 7

16
, then f3(x) < 0 when x ∈ [∆0,2

√
2− 4β∆0] and f3(x) > 0 when x ∈

(2
√
2− 4β∆0,+∞).

(ii-c) If 7
16

<β ≤ 1
2
, then f3(x)> 0 when x∈ [∆0,2∆0).

(iii) When (β, c) ∈ III, then ΠP
M = (1− c− 2β∆0)2β∆0 and ΠP

P = β∆2
0 . πU

M − ΠP
M = f4(x) =

x2

8
− 2β∆0x+4β2∆2

0, where (4β− 1)∆0 ≤ x< 4β∆0.

(iii-a) If 1
2
< β ≤ 1+

√
2

4
, then f4(x)> 0 when x ∈ [(4β− 1)∆0, (8− 4

√
2)β∆0) and f4(x)< 0 when

x∈ ((8− 4
√
2)β∆0,4β∆0).

(iii-b) If β > 1+
√
2

4
, then f4(x)< 0 when x∈ [(4β− 1)∆0,4β∆0).

Similarly, πU
P −ΠP

P = f5(x) =
x2

16
−β∆2

0, where (4β− 1)∆0 ≤ x< 4β∆0.

(iii-a) If 1
2
<β ≤ 1, then f5(x)< 0 when x∈ [(4β− 1)∆0,4β∆0).

(iii-b) If 1< β ≤ 3+2
√
2

4
, then f5(x)< 0 when x ∈ [(4β − 1)∆0,4

√
β∆0) and f5(x)> 0 when x ∈

(4
√
β∆0,4β∆0).

(iii-c) If β > 3+2
√
2

4
, then f5(x)> 0 when x∈ [(4β− 1)∆0,4β∆0).
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(iv) When (β, c) ∈ IV , then ΠP
M = β(1−c−∆0)

2

2(2β−1)
and ΠP

P = β(1−c−∆0)
2

4(2β−1)
. πU

M − ΠP
M = f6(x) =

x2

8
−

β(x−∆0)
2

2(2β−1)
, where ∆0 ≤ x< (4β− 1)∆0.

(iv-a) If 1
2
<β ≤ 1+

√
2

4
, then f6(x)> 0 when x∈ [∆0, (4β− 1)∆0).

(iv-b) If β > β, then f6(x)> 0 when x∈ [∆0,
A

A−1
∆0) and f6(x)< 0 when x∈ ( A

A−1
∆0, (4β−1)∆0),

where A=
√

4β
2β−1

.

Due to πU
P −ΠP

P = 1
2
f6(x), the analysis is similar and we omit the detail.

In summary, as far as the comparison of πU
M and ΠP

M , we have πP
M ≥ πU

M if 0< c≤min{1− (4−

2
√
2)∆0,1− (8− 4

√
2)β∆0,1− A∆0

A−1
) and πP

M <πU
M otherwise.

Regarding the comparison of πU
P and ΠP

P , we can use the following Figure A to show the results.

1 − 2∆0

1 − ∆0

𝛽1

2

1

4∆0
3 + 2 2

4

𝑐

𝜋𝑃
𝑃 > 𝜋𝑃

𝑈

𝜋𝑃
𝑃 < 𝜋𝑃

𝑈

1

4

7

16
1

𝜋𝑃
𝑃 > 𝜋𝑃

𝑈

𝜋𝑃
𝑃 > 𝜋𝑃

𝑈

𝜋𝑃
𝑃 < 𝜋𝑃

𝑈

1 + 2

4

Figure A The comparison of platform’s profits

Source(s): Figure created by authors

We define the following sets according to the analysis of the above cases.

A={1− (4− 2
√
2)∆0 < c≤min{1− 2

√
2− 4β∆0,1−∆0}∪max{1− A∆0

A−1
,1− (8− 4

√
2)β∆0}< c≤ 1−∆0},

B ={0≤ c≤min{1− 2∆0,1− 4
√

β∆0,1− 4β∆0}}∪ {max{1− 2∆0,1− 2
√
2− 4β∆0}< c≤ 1− (4− 2

√
2)∆0}

∪ {max{1− 4β∆0,1− 4
√

β∆0} ≤ c <min{1− (8− 4
√
2)β∆0,1− A∆0

A−1
}},

C ={max{1− (4− 2
√
2)∆0,1− 2

√
2− 4β∆0} ≤ c≤ 1−∆0}∪ {1− (8− 4

√
2)β∆0 ≤ c < 1− (4β− 1)∆0},

D={1− 4
√
β∆0 ≤ c <min{1− 2

√
2− 4β∆0,1− (4− 2

√
2)∆0}}∪ {1− 4

√
β∆0 ≤ c < 1− 4β∆0}

∪ {0≤ c <min{1− 4
√
β∆0,1− (4β− 1)∆0}}.

Then, the final results are shown in Proposition 3.
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